UNIT Il
QUANTUM MECHANICS

Wave particle dualism:

It is bit difficult to conceive the idea of conception of dual nature of matter. i.e.,
matter behaves as both particle and wave nature.

The characteristics of a particle are: it has a mass, it occupies a definite point on a
space, it can move from one point to another point. So it has momentum. Thus the
particles can be specified by

a) mass b) velocity ¢) momentum d) energy and e) two particles cannot occupy a
single space simultaneously. A wave is specified by

a) wavelength b) frequency c) amplitude d) Intensity and e) phase

Thus the characteristics of particles are quite different from those of wave. But
from the experimental facts it has been established that the radiations such as light some
time behave as wave and some time as a particle.

To explain the phenomenon such as interference, diffraction, etc. a radiation
should behave as wave. To explain photoelectric effect, Compton Effect, etc. the radiation
should behave as particle (photon).

Thus radiation has dual nature. But it is to be noted that the radiation cannot
exhibit both the properties of particle and wave simultaneously.

De Broglie’s concept of matter wave:

The origin of quantization of energy lies in the dual behavior observed in nature in
particle and wave aspects. Consider x — rays, Compton observed that the scattering of x —
rays by electron is the confirmation of law of conservation of energy and it is a case of
elastic collision of two particles. So from the physics point of view, X — rays assumes the
status of a particle. Also x — rays are diffracted by a crystal. Since diffraction is a wave
phenomenon, x — rays behaves as waves. Because of this dual nature of radiation, Louis
de Broglie in 1924, given an hypothesis which states that “since nature likes symmetry, if
the radiation behaves as particle under certain circumstances, and as waves under certain

other circumstances, then one can even expect that entities which ordinarily behave as



particles to exhibit properties attributable to only waves under appropriate circumstances

and he termed them as matter waves”.
Energy carried by a photon is given by, E=hv
From Einstein’s mass energy relation, E=mc?
Therefore mc?=hv
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p= hTU (as c=vA)

in terms of wavelength 2,
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Wavelength of a photon is related to its momentum

h
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de Broglie argued that, since nature loves symmetry the particles should also behave as
waves. As per the above equation wavelength is related to momentum. In similar way, if

p=mv is the momentum of the particle, the de Broglie wavelength associated with it is
given by
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These waves which are due to particles are called matter waves or de Broglie waves.

De Broglie wavelength of an accelerated electron:

If the electron accelerated under the potential difference V, then its energy is eV. If

m is the mass of the electron and v is its velocity then for non relativistic case,

1
“mvi=eV = y=_|—="

Following the de Broglie hypothesis,
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Substituting all the values,

. 1 ( 6.63x10°3* ]
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Relation between kinetic energy and de Broglie wavelength:

Since Kinetic energy of an electron is given by E:%mv2
So E=eV
h h h
p— = l =
J2meV  2mE OR 2mE

Phase velocity:

V= is the velocity with which the wave disturbance is carried and is referred to as

=~

phase velocity. Hence phase velocity is written as

v _
phase —
K



Definition: If a point is imagined to be marked on a traveling wave, then it becomes a
representative point for a particular phase of the wave, and the velocity with which it is

transported owing to the motion of the wave, is called phase velocity.

Group velocity:

Group velocity is the velocity with which the envelop enclosing a wave group
called wave packet formed due to superimposition of two or more traveling waves of
slightly different wavelengths is transported or it is the velocity with which the energy

transmission occurs in a wave packet.
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a) Individual Waves b) Amplitude variation after
Superposition

The velocity with which the variation in amplitude is transmitted in the resultant
wave is called group velocity and is given by

do

V = —
group
dk

Relation between Vgroup @Nd Vphase

We have the equations for group velocity and phase velocity as

do

Vgroup = PR — (1)
w
Vphase = —  -mmmmmmmmmmmmmmmooe- (2)
K
Where o — angular frequency, K — wave vector,
From (2), ® =K . Vprase



do — d (k'vphase)

Vgroup=——
IO dk dk
dv
- phase
Vgroup= Vphase +K..
group p dk

Above equation can be written as

dV ase dﬂv
e[ 25)8

We know that, k = 2%

Differentiate w.r.t. A, we get

........................ 3)
k=@_2A _2r
v fa 4
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Use equation (4) in above equation

dv
phase
Vgroup = Vphase = 4
group p da

This is the relation between group velocity and phase velocity.

Relation between Vgroup @Nd Vparticle:

We know that, Vgroup = Qo
dk
But 0= 21y = ZnE --------------
do = 2z dE. = e
h



Also, we have k = 27 _ 27 P (since A = E)
A h P

(27 \(p
dk = (TJdP 4)

Equation (3) divided by equation (4)

do dE
SESTE e (5)
dk dP
PZ
We know that E=—
2m
where P — momentum of a particle
2m m dp m
butP=mv particle
mv. ...
dE _ particle N (6)

. - icle
dp m particl

From equations (1), (5) and (6) we have
Vgroup = Vparticle
. The de Broglie wave group associated with a particle travels with a velocity equal to

the velocity of the particle itself.

Relation between velocity of light, Vgroup. 2Nd Vphase:

w
We Know, Vphase = M

Substitute @ = 2ny = 27:% and k = 277[ = 27Z'E

E
V = o h E mcz Y/ =V
hase = — Y, T < T . roup — Vparticle
P 2r % P m Vparticle o P



Vphase =
group

. — A2
o Vphase- \" group — C

Particle velocity is always less than ‘c’, = the phase velocity is always greater than ‘c’

Matter waves:

All matter can exhibit wave-like behavior. For ex. A beam of electrons can be

diffracted just like a beam of light. Matter waves are a central part of the theory of

guantum mechanics, an example of wave-particle duality. Matter waves are often referred

to as de Broglie waves.

Wave-like behavior of matter was first experimentally demonstrated in the

Davisson-Germer experiment using electrons, and it has also been confirmed for other

elementary particles, neutral atoms and even molecules. The wave-like behavior of matter

is crucial to the modern theory of atomic structure and particle physics.

Characteristics of matter waves:

The characteristics of matter waves are

Matter waves are the waves that are associated with a moving particle. The
wavelength and frequency of the waves are
E .
A=— and y= Py where ‘h’ is planck’s constant.
P
The velocity of matter waves is not constant and it depends only on the

material particle.

. h h .
The relation, A =—= — , shows that the wavelength of matter waves is
p my

larger for a lighter particle and the wavelength increases with the decrease in
velocity of the particle.
The particle and the wave properties of a moving particle never appear

simultaneously. One can say that the particle has wave-like property and the



wave has particle-like property. These two properties are liked in such a way
that they are inseparable.

vi) The amplitude of the matter waves at a particular region and time depends on
the probability of finding the particle at the same region and time.

vii)  The wave velocity or the phase velocity of the matter wave are given by

2
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h =
phase v
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where, Vgoup is the particle velocity which is always less than ‘c’. Thus the
velocity of the matter waves is always greater than ‘c’, i.e., they are not physical

waves.
viii)  Unlike any electromagnetic waves, which always travel with a constant

velocity c, the wave velocity of different matter waves may differ depending on

the mass and velocity of the particle.

Heisenberg’s Uncertainty Principle:

According to de Broglie, a particle can be considered as a group or packet of
waves. As this wave packet is spread in space, we cannot accurately find the position of a
particle. It can only said that, the particle is somewhere within the region over which the
wave packet is spread.

Let the motion of the particle be along x — axis. Let Ax is the distance at which the
amplitude is zero and corresponding points are called nodes. There will be a minimum
error ‘Ax’ in the measurement of the position of the particle. This is inevitable due to the

wave nature of matter.
The amplitude of the wave packet is given by 2Acos{(ATw)t — (A?k)x}
At nodes, the amplitude is zero.

ie., 2Acos{(ATa)) t— (A?k)x}: 0

A
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since 2A +0, = cos{(%))t - (A?k)x} =0

or (ATa))t_(A?k)xz—,—, .............. (2ﬂ+1)5

If X1 and X, are the positions at which the nodes are formed, then for the first node.

Aw Ak V3
e R (1)

Since, there is a change of phase n, between the successive nodes, the eaquation for the

second node is,

Aw Ak V4
—)It—(—=)X, =(@2n+1) =+ 7 -----mmmmmmmmmeme 2
=G =@+ 2+ )
Subtracting equation (1) from equation (2), we get
A7k(x1—x2):7r since X, —X, =AX
Ak 2w
—(AX) = or AX=— ------mm-moee- -(3
, () =7 v 3)
we know that, k= 27” = 27:3* or Ak = @ ----------------- 4)

where APy represents the fundamental error in the measurement of momentum of the
particle.
Substitute equation (4) in equation (3), we get

h

AX = ——
AP,
This is the case of superposition of two waves. In general if there are more than two

waves.

AX = é ---------------- (5)

Ak
Substitute equation (4) in equation (5)

AX = h
4r(AP,)
h
or AX. AP, = —— memmmmmeeeee (6)
4

The fundamental error in ‘x’ and ‘Pyx’ could be equal to, or greater them Ax and APy

respectively, then equation (6) can be written as



AX . AP, > LU (7)

4
Statement:
“In any simultaneous determination of the position and momentum of the particle,

the product of the corresponding uncertainties inherently present in the measurement is

h
equal to, or greater than (—) ” OR
Ar
“It is impossible to measure both the position and momentum of a particle simultaneously

and accurately”

The Heisenberg’s uncertainty principle could also be expressed in terms of the
uncertainties involved in the measurement of physical variables-pair, angular displacement
(6) and angular momentum (L) etc.

Thus, we have the uncertainty relations,

Ax APX = (1)
A

AE At> (1)
4

ALAO> (1)
4

Where, the notation A in association with the respective variables indicates the minimum

uncertainty involved in the measurement of the corresponding variable.

Physical significance of Heisenberg Uncertainty principle:

By knowing the particle position and momentum at any given instant of time, it is
possible to evaluate it position and momentum at any later point of time, and the trajectory
of the particle could be continuously traced. But in wave mechanics it is impossible to
determine simultaneously both the position and momentum of a particle accurately.
Suppose if we made the measurement of position of the particle such as electron very
accurately, then there is a large uncertainty in the measurement of momentum, and vice

versa. So one should not think the exact position or an accurate value for momentum of a

10



particle. Instead one should think of the probability of finding the particle at a certain

position or of the probable value for the momentum of the particle.

Application of Heisenberg Uncertainty principle

Non - existence of electron in the nucleus:

We know that from Heisenberg’s uncertainty

AX . APx > L (1)
4r

We know that the diameter of the nucleus is of the order of 10™* m. if suppose the
electron exists inside the nucleus, then uncertainty in its position Ax must not be more than
the size of the nucleus.

ie., Ax <10 ¥“m
Then, the uncertainty in its momentum is

h ~ 6.625 x107*
A7 AX 47 x107™

APXx >

PN N 0 Rl N — - )

We know the energy momentum relation as

= R T R ——— (3)

From theory of relativity, the energy, E of a body is

[ Ref: E=mc? So E?’=m%*
_ 2_ .22 m,
P=mv So P =m“v But m=———
1_V7
C2
We get E? —P%c? = m%c’ ]

Rest mass of electron m, =9.11 x 10 *! kg
Substitute all the values of equation (3)
E*>(05x10%°)? (3x10%) 2+ (9.11 x 10 ')?x (3 x 10%)*
E°>15x10 ")
or E>94MeV
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If electron exist inside the nucleus, its energy must be greater than 9.4 MeV. But
the experimental investigation on beta — decay says, the K E of the electron is of the order

of 3to 4 MeV. This clearly indicates that, electrons cannot exist within the nucleus.

Physical interpretation of the wave function (y ):

In classical mechanics, 1 o AZ, where | is the intensity of radiation and ‘A’ is the
amplitude of radiation. Similar interpretation is applied to de Broglie waves, associated

with electron or any particle. Hence if we consider a system of electrons and y is the
wave function associated with electron or any particle, then ‘z//z‘ may be regarded as a

measure of density of electrons.
Consider a volume 1, inside which an electron is known
to present, but where exactly the electron is situated inside 7 is not

known. If y is the wave function associated with the electron,

then the probability of finding the electron in a certain element
of volume dr of 1 is equal to |l//|2dz'. For this reason |y/|2 is called the probability function.

This is the interpretation given by Max Born in 1926.
Probability of occurrence of an event is a real and positive quantity. But wave

functions may be complex. Hence, in order to get a value that is positive and real while
evaluating |y/|2, the wave function y is multiplied with its complex conjugate y *. The
product y * is always a positive real quantity.

. Probability density is given by, |y| =y *y .

Normalization of wave function (v ):

Since the electron must be somewhere inside the volume 1, then the integration of

|l//|2 over the whole volume t must be unity, so that

I|l//|2.dr =1
Above condition is called Normalization of wave function.

Every solution of Schrodinger’s wave equation should be normalizable.

Properties of wave function (v ):

12



The wave function y should obey few conditions to be a solution of Schrodinger’s wave
equation. The conditions are:

v should be continuous.
v should be single valued, and

. . d .
derivatives of vy, i.e. d—‘//should also be continuous.
X

M W pdpE

For bound states,  must vanish at infinity. If y is a complex function, theny *y

must vanish at infinity.
The y which satisfy the above conditions are acceptable solutions of Schrodinger’s wave
equation.

Schrodinger equation

The wave function in quantum mechanics accounts for the wave-like properties of
a particle. It is obtained by solving a fundamental equation called Schrédinger equation.
The response of the wave properties of a particle to an external force follows a basic of
quantum mechanics that, in its mathematical form, is known as the Schrddinger equation.
To solve the Schrodinger equation it requires the knowledge of,
(1) Potential energy of the particle
(2) Initial conditions and

(3) Boundary conditions

The Schrédinger equation can be set up in two different contexts. One, which in
general takes care of both the position and time variations of the wave function, is called
time dependent Schrodinger equation. It involves the imaginary quantity, ‘1’. The other
one is applicable only to steady state conditions in which case, the wave function can have
variation only with position but not with time. It is called time-dependent Schrodinger

equation and is simpler than the other one. It does not involve, ‘1 .

The time dependent Schrédinger equation is given by,

h> d’y ih dy
- ——+V
87 m dx? v 27 dt

The time independent Schrddinger equation is given by,

13



d% 87z°m
+
dx? h?

(E-V)y=0

Time independent Schrédinger wave equation:

Schrodinger in 1925 developed an equation for the wave associated with the

material particles like electron, proton, neutron, etc. which would describe the behavior of

the particles. He used de Broglie ideas of matter waves.

A wave eqgn. for a de Broglie wave is given by
yv=A gitx-et) . 1)
Differentiating twice eqgn.(1) with respect to t we get

62_\|/ @2 [A ei(kx-mt)]

atz

82

e (2)
Displacement ‘y’ of a wave is given by~ y = A sin[wt-KX]------- (A)

2

Differentiating twice w.r.t ‘t’ we get % R (B)

Similarly differentiating twice w.r.t x’ we get
0%y ) o)’ 1,

—5=-Ky=-—]y=—|=|oy-—(C)

OX v v

2 2
Comparing eqns (B) & (C) we get % - (%)a&_g —

By analogy eqn. for a traveling de Broglie wave is given by

Ty (1)0Y

ox? V2

. o*y o)’ ) _ _
Comparing egns. (2) & (4) =-| — | v ;Where ®=2nvand v=viA
v

ox?
oy | 4n’ 1 1 |0%y
R AP i or —=- R
ox? { 2 }\" % {mﬁ;}axz ©)

For a particle of mas ‘m’ moving with a velocity ‘v’
Kinetic energy = % mv? = m?/2m = p*2m

But p=h/A

Therefore, KE =[1/A%] [h%/2m]

Substituting for 1/ A% from eqn (5) we get

e[ L |[h ][ v 1oy
4’y || 2m | ox? 8n’m || y | Ox?

Total energy is given by

2 2
E=PE+KE= V- hz 10V
8n°m || v | OX
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az—wz(E-V){'s“zm}w

ox? h?
0’ 8n°m
o { = }(E-vmmo

It may be noted that, the time dependent Schrédinger equation is the most useful
equation employed in majority of the cases in quantum mechanical problems as compared

to time-dependent Schrddinger equation.

Eigen functions and Eigen values:

If the wave function y for a system is known, then the state of the system can be
determined. A system is defined by its energy, momentum, position etc. In order to find
v we have to solve Schrodinger’s equation. Since Schrodinger’s equation is a second
order differential equation, there are several solutions. Among all the solutions we have to
search the wave function which is best acceptable. For an acceptable solution, the wave
function should satisfy the following criteria.

1. v is single valued everywhere
2.y and its first derivatives with respect to its variables are continuous everywhere.

3. y is finite everywhere.

In Quantum mechanics, the acceptable wave functions which meaningfully

represent a physical system are known as Eigen functions.
Once Eigen functions are known, by using this in Schrédinger’s equation we can
evaluate the energy. Since there is only restricted set of Eigen functions; there is also
restricted set of energy values. These values are called Eigen values (proper or

characteristic values).

Mathematically

(A =) y= 0 — characteristic equation or eigen equation

A is Eigen values. “A’ is operator.
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Ay= Ay

Ex: ieaX =ae¥
dx
For a hydrogen atom,
4
E, = —Lz(izj where n=1,2,3,.........
327°¢,"h* \n

are eigen values.

Applications of Schrodinger wave equation:

Particle in one dimensional potential well of infinite height.

Consider a particle of mass ‘m’ moving freely in the x — direction only in the region
from x = 0 to x = a. Outside this region the potential energy “V’ is taken to be infinite and
within this region it is zero. This problem physically represents the motion of electron in
periodic lattice.

Outside the well, the Schrodinger equation is o0 0
‘ZX‘” + 8’;2”‘ (E =)y = 0rorenmmems OIGAEREDEE N ~
This equation holds good only if w =0 for all points T V=0 T
outside the box. i.e., |z//|2 =0 which means that particle \Y;
does not exist outside the well. .......... (D x=0 X=a
Inside the box, the Schroédinger equation is X —>

d? 87°m N
dxl/"‘/+ h2 Ey =0 ----mmomemoeees 2 (V=0
_h2 d2

> 87[2m'[ dx‘é’J: Ey e (3)

This is of the form Hy = Ew — Eigen equation

87°m

Let 2 E =k? in equation (2), we get
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Solutions: The solution for the above equation is given by

w = Ccoskx + DSinkX --------=---=-=------- (5)

Let us find the values of C and D using boundary conditons.

But w=0atx =0, as per (I)

. Equation (5) — 0=CcosO+Dsin0

i.e., C=0 - (6)
Also w =0 at x = a, as per (I)
Equation (5) — 0 =C cos ka + D sin ka
or Dsinka=0 ¢ 0)
For this to happen, D need not be zero.

sinKa=0 (" D#0)
or ka = nz
wheren=0,1,2................ n is called quantum number.

k=" ™

a

substitute the value of ‘C’ and ‘k’ in equation (5), we get

v, =Dsin hz X mmmmmmmmmmeeee (8)

a
which represents the permitted solutions.
2
We know that 87:]2m E=k?
". The corresponding energies are
212 212
E_kh_nh___ ________ )

87°m 8ma’
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In equation (9), the value n = 0 is not acceptable because when n = 0, y, =0by

equation (8), which means to say that the particle is not present inside the box, which
is not true. Hence the lowest value of n is 1, and the energy corresponding to n =1 is
called zero — point energy, which is given by

h2
ma

Ezero point = 8 2

The lowest permitted state of energy is referred to as the ground state energy.
Thus zero point energy is taken as the ground state energy. The states corresponding
to n > 1 are called excited states. We still need to evaluate D. It can be obtained by

normalization of y .

Normalization

As we know the particle must be present at any time, somewhere inside the box
only. Therefore the integral value of the probability function over the entire space in
the box must be unity.

ie., I|w|2.dx=1
or IDzsinzn—”x.dx:l
. a

Using the formula, Sin%0 = 1-cos20

We can write the above integral as,

2 a a
D— J'dx—.[coszn—ﬂx.dx =1
2 a
0 0

2 a
or D_{X_isin(%_ﬂx)} _q
2 27n a ],
DZ

a .
7{a —%sm(Zﬂn) —O} =1
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or

Thus normalized wave function of a particle in one dimensional box is given by

2 . [nﬂ)
v, == . sin| — |x
a a

Eigen functions, probability densities and energy Eigen values (enerqy levels) for

particle in a box.

For a particle in an infinite potential well, we have the Eigen function given by,
2102

v, = Dsin[n—”jx and Eigen values are given by E_ = g—z , where n=1, 2, 3,....
a ma

Case (i) n = 1: This is the ground state and the particle is normally found in this state.

W, = Dsin(sz
a

Here w, =0 forbothx=0and x =a

For n =1, Eigen function is

But y, has a maximum value for x = %. Thus a plot of y, Vs ‘x’ is shown below.

2
v, N’l|

x=0 ¥2 x=a x=0 g2 X=a
Fig.1a Fig.1b
Here |z//1|2 is the probability density. Fig 1 b indicates the probability of finding the

particle at different locations inside the box. Also |z,//1|2: 0 for both x =0 and x = a, it is
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: a . .
maximum for x = 5 It means that in ground state, the particle cannot be found at the

walls of the box and the probability of finding the particle is maximum at the central

region.

The energy of this state is the ground state energy which is nothing but zero point energy.

Case (ii) n = 2: This is the first excited state. The Eigen function for this state is

W, = Dsinz—”x
a

Now y, =0,when x =0, %and a. And y, is maximum for x = % and 3;_a
Similarly |1//2|2: 0forx =0, %and a. And |1//2|2 is maximum for x = % and i—a

ald Sald
ald

3ald

v,

It means that in the first excited state the particle cannot be observed either at the walls or

at the centre.

Energy equation for this state is

h2
= 4E,

E. =4, =
2 "8ma?

Thus the energy in the first excited state is four times the zero point energy.
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