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Applied Physics Unit-IV 

PART-I- Semiconductor 

Metals have large number of free electrons ~ 1028 m-3 and hence are good conductors of heat and 

electricity. In the case of semiconductors, the electron densities are considerably low ~ 106 to 1013 m-

3 leading to lower electrical conductivities and the electron densities for few metals and 

semiconductors are listed in the table  

Element  (m)-1  (m) n m-3 

Metals  

Cu 5.98 x 107 1.67 x 10-8 8.47 x 1028 

Ag  6.30 x 107 1.58 x 10-8 5.86 x.1028 

Au 4.25 x 107 2.35 x 10-8 5.90 x 1028 

Zn 1.68 x 107 5.95 x 10-8 13.2 x.1028 

Al 3.50 x 107 2.86 x 10-8 18.1 x.1028 

Semiconductors  

Ge 2.17 0.47 2.2 x 1013 

Si 1.56 x 10-3 640 8.72 x 109 

GaAs 5 x 10-8 to 103  2.03 x 106 

 

In metals only free electrons contribute to both electrical and thermal conduction, whereas in the case 

of semiconductors in addition to electrons, holes also contribute. Thus, one needs to consider both 

electrons and holes while studying the transport properties in semiconductors. 

 

Expression for concentration of electrons in conduction band: 

For a semiconductor in a conduction band, some lower energy states are filled with electrons at 

room temperature. The concentration of electrons in conduction band is given by 

𝑛 =  ∫ 𝑁(𝐸)𝑓(𝐸)𝑑𝐸    ----------------(1) 

Where 

N(E) = No. of electrons/unit energy/unit volume and f(E) =Fermi factor 

We have  

𝑁(𝐸) =  (
4𝜋

ℎ3) (2𝑚𝑒
∗)

3
2⁄   𝐸

1
2⁄    ----------------(2) 

𝑓(𝐸) =  
1

1+exp(
𝐸−𝐸𝑓

𝑘𝐵𝑇
)
   ----------------(3) 
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At room temperature, (E – Ef) > kBT 

𝑓(𝐸) =  
1

exp(
𝐸−𝐸𝑓

𝑘𝑏𝑇
)

=  exp [− (
𝐸−𝐸𝑓

𝑘𝐵𝑇
)]  ----------------(4) 

Hence eqn(1) becomes 

𝑛 =  ∫ (
4𝜋

ℎ3) (2𝑚𝑒
∗)

3
2⁄   (𝐸 − 𝐸𝐶)

1
2⁄𝐸𝐶+𝜑

𝐸𝐶
exp [− (

𝐸−𝐸𝑓

𝑘𝐵𝑇
)] 𝑑𝐸  

Here E1/2 has been replaced by (E-Ec)
1/2  since Ec is lower energy level in conduction band and  Φ is 

the work function of the metal. The combination of Ec + Φ turns out to be huge and we can replace 

it by ∞. 

𝑛 =  (
4𝜋

ℎ3) (2𝑚𝑒
∗)

3
2⁄   ∫ (𝐸 − 𝐸𝐶)

1
2⁄∞

𝐸𝐶
exp [− (

𝐸−𝐸𝑓

𝑘𝐵𝑇
)] 𝑑𝐸----------------(5) 

 

Evaluating the above integral by taking E = Ec +x and dE = dx and limit of the integration as 0 to ∞ 

(assuming the lowest energy almost to be equal to zero). 

𝑛 =  (
4𝜋

ℎ3
) (2𝑚𝑒

∗)
3

2⁄   ∫ (𝑥)
1

2⁄

∞

0

exp (
𝐸𝑓 − 𝐸𝑐  − 𝑥

𝑘𝐵𝑇
) 𝑑𝑥  

𝑛 =  (
4𝜋

ℎ3
) (2𝑚𝑒

∗)
3

2⁄   ∫(𝑥)
1

2⁄

∞

0

exp (
𝐸𝑓 − 𝐸𝑐 

𝑘𝐵𝑇
) exp (

−𝑥

𝑘𝐵𝑇
) 𝑑𝑥 

𝑛 =  (
4𝜋

ℎ3
) (2𝑚𝑒

∗)
3

2⁄   exp (
𝐸𝑓 − 𝐸𝑐 

𝑘𝐵𝑇
) ∫(𝑥)

1
2⁄

∞

0

exp (
−𝑥

𝑘𝐵𝑇
) 𝑑𝑥 

Let 𝑦 =  
𝑥

𝑘𝐵𝑇
  𝑡ℎ𝑒𝑛  𝑑𝑦 =  

𝑑𝑥

𝑘𝐵𝑇
  

𝑛 =  (
4𝜋

ℎ3) (2𝑚𝑒
∗)

3
2⁄   exp (

𝐸𝑓−𝐸𝑐 

𝑘𝐵𝑇
) (𝑘𝐵𝑇)

3

2 ∫ (𝑦)
1

2⁄∞

0
exp (−𝑦) 𝑑𝑦 ----------------(6) 

Using gamma integral function we can write ∫ (𝑦)
1

2⁄∞

0
exp (−𝑦) 𝑑𝑦 =  

𝜋
1

2⁄

2
 

𝑛 =  (
4𝜋

ℎ3
) (2𝑚𝑒

∗)
3

2⁄   exp (
𝐸𝑓 − 𝐸𝑐 

𝑘𝐵𝑇
) (𝑘𝐵𝑇)

3
2  (

𝜋
1

2⁄

2
) 

𝒏 =  𝟐 (
𝟐𝝅𝒎𝒆

∗𝒌𝑩𝑻

𝒉𝟐 )
𝟑

𝟐⁄   

𝐞𝐱𝐩 (
𝑬𝒇−𝑬𝒄 

𝒌𝑩𝑻
) = 𝑵𝒄 𝐞𝐱𝐩 (

𝑬𝒇−𝑬𝒄 

𝒌𝑩𝑻
) ----------------(7) 

Where 𝑵𝒄 =  𝟐 (
𝟐𝝅𝒎𝒆

∗ 𝒌𝑩𝑻

𝒉𝟐 )
𝟑

𝟐⁄   

  and equation (7) represents concentration of electrons in conduction 

band 
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Expression for concentration of holes in valence band: 

The concentration of holes in valence band can be calculated as follows   

𝑛 =  ∫ 𝑁(𝐸)[1 − 𝑓(𝐸)] 𝑑𝐸    ----------------(1) 

By substituting the values for N(E) & f(E) and solving the integral as we did for the concentration 

of electrons in conduction band we can arrive at the following equation 

𝒏 =  𝟐 (
𝟐𝝅𝒎𝒉

∗ 𝒌𝑩𝑻

𝒉𝟐
)

𝟑
𝟐⁄   

𝐞𝐱𝐩 (
𝑬𝒗−𝑬𝒇 

𝒌𝑩𝑻
) =  𝑵𝒗  𝐞𝐱𝐩 (

𝑬𝒗−𝑬𝒇 

𝒌𝑩𝑻
) ----------------(2) 

Where 𝑵𝒗 = 𝟐 (
𝟐𝝅𝒎𝒉

∗ 𝒌𝑩𝑻

𝒉𝟐 )
𝟑

𝟐⁄   

𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ℎ𝑜𝑙𝑒𝑠 𝑖𝑛 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑏𝑎𝑛𝑑 

and equation (2) represents concentration of holes in valence band 

 

Expression for intrinsic carrier concentration: 

In an intrinsic semiconductor, the concentration of holes and electrons are equal, i.e.,. n = p. The 

product of hole and electron concentrations for a given material is constant at a given temperature. If 

impurity is added to increase n, there will be corresponding decrease in p so that the product n x p 

remains constant and is sometimes called law of mass action. Therefore in an intrinsic semiconductor  

n x p = ni x pi = ni
2 

𝑛𝑖
2  = [𝟐 (

𝟐𝝅𝒎𝒆
∗𝒌𝑩𝑻

𝒉𝟐
)

𝟑
𝟐⁄   

𝐞𝐱𝐩 (
𝑬𝒇 − 𝑬𝒄 

𝒌𝑩𝑻
)] [𝟐 (

𝟐𝝅𝒎𝒉
∗ 𝒌𝑩𝑻

𝒉𝟐
)

𝟑
𝟐⁄   

𝐞𝐱𝐩 (
𝑬𝒗 − 𝑬𝒇 

𝒌𝑩𝑻
)] 

𝑛𝑖
2  = 4 (

𝟐𝝅𝒌𝑩𝑻

𝒉𝟐
)

𝟑  

(𝒎𝒉
∗ 𝒎𝒆

∗)
𝟑

𝟐⁄   𝐞𝐱𝐩 [− (
𝑬𝒄 − 𝑬𝒗 

𝒌𝑩𝑻
)] 

    Multiply and divide on right side by m3 

𝑛𝑖
2  = 4 (

𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐
)

𝟑  

(
𝒎𝒉

∗ 𝒎𝒆
∗

𝒎𝟐
)

𝟑
𝟐⁄   

𝐞𝐱𝐩 [− (
𝑬𝒄 − 𝑬𝒗 

𝒌𝑩𝑻
)] 

Substituting (Ec – Ev) = Eg, we get 

𝑛𝑖
2  = 4 (

𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐
)

𝟑  

(
𝒎𝒉

∗ 𝒎𝒆
∗

𝒎𝟐
)

𝟑
𝟐⁄   

𝐞𝐱𝐩 [− (
𝑬𝒈 

𝒌𝑩𝑻
)] 

𝑛𝑖  = 2 (
𝟐𝝅 𝒎 𝒌𝑩𝑻 

𝒉𝟐
)

𝟑
𝟐⁄   

(
𝒎𝒉

∗ 𝒎𝒆
∗

𝒎𝟐
)

𝟑
𝟒⁄   

𝐞𝐱𝐩 [− (
𝑬𝒈 

𝟐𝒌𝑩𝑻
)] 

𝑛𝑖  = 2 (
𝟐𝝅 𝒎 𝒌𝑩 

𝒉𝟐
)

𝟑
𝟐⁄   

(
𝒎𝒉

∗ 𝒎𝒆
∗

𝒎𝟐
)

𝟑
𝟒⁄   

𝑻𝟑/𝟐 𝐞𝐱𝐩 [− (
𝑬𝒈 

𝟐𝒌𝑩𝑻
)] 

𝒏𝒊  = 𝑨𝒐𝑻𝟑/𝟐  𝒆𝒙𝒑 [− (
𝑬𝒈 

𝟐𝒌𝑩𝑻
)]  
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Where Ao = 2 (
𝟐𝝅 𝒎 𝒌𝑩 

𝒉𝟐 )
𝟑

𝟐⁄   

(
𝒎𝒉

∗ 𝒎𝒆
∗

𝒎𝟐 )
𝟑

𝟒⁄   

 

Substituting for constants we get 

𝐴𝑜  = 2 (
𝟐𝝅 𝒙 𝟏. 𝟑𝟖 𝒙 𝟏𝟎−𝟐𝟑 𝒙  𝟗. 𝟏 𝒙 𝟏𝟎−𝟑𝟏

(𝟔. 𝟔𝟑𝟒 𝒙 𝟏𝟎−𝟑𝟒)𝟐
)

𝟑/𝟐  

(
𝒎𝒉

∗ 𝒎𝒆
∗

𝒎𝟐
)

𝟑
𝟒⁄   

 

                            𝐴𝑜  = 4.819 𝑥 1021 (
𝒎𝒉

∗ 𝒎𝒆
∗

𝒎𝟐 )
𝟑

𝟒⁄   

 

 

Fermi level in an intrinsic semiconductor: 

The Fermi-level in an intrinsic semiconductor is nearly midway between the conduction and 

valence band.  

 

In an intrinsic semiconductor, the concentrations of electrons and holes are equal. Therefore we can 

write 

𝑵𝒄 𝐞𝐱𝐩 (
𝑬𝒇 − 𝑬𝒄 

𝒌𝑩𝑻
) =  𝑵𝒗  𝐞𝐱𝐩 (

𝑬𝒗 − 𝑬𝒇 

𝒌𝑩𝑻
)  

 
𝑵𝒄

𝑵𝒗
= 𝐞𝐱𝐩 [− (

𝑬𝒇 − 𝑬𝒄 

𝒌𝑩𝑻
)]  𝐞𝐱𝐩 (

𝑬𝒗 − 𝑬𝒇 

𝒌𝑩𝑻
) 

𝑵𝒄

𝑵𝒗
= 𝐞𝐱𝐩 [(

𝑬𝒗 + 𝑬𝒄  − 𝟐𝑬𝒇 

𝒌𝑩𝑻
)]   

𝒍𝒏 [
𝑵𝒄

𝑵𝒗
] = 

𝑬𝒗 + 𝑬𝒄  − 𝟐𝑬𝒇 

𝒌𝑩𝑻
 

𝑬𝒗 + 𝑬𝒄  − 𝟐𝑬𝒇  =  𝒌𝑩𝑻 𝒍𝒏 [
𝑵𝒄

𝑵𝒗
] 

 𝑬𝒇  =  
𝑬𝒗 + 𝑬𝒄

𝟐
 −  

𝒌𝑩𝑻

𝟐
  𝒍𝒏 [

𝑵𝒄

𝑵𝒗
] 
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If the effective masses of the holes and electrons are equal, then 

 𝑬𝒇  =  
𝑬𝒗 + 𝑬𝒄

𝟐
 

Hence it is clear from the above equation that for an intrinsic semiconductor, the Fermi level lies at 

the middle of the energy gap, when the effective masses of the holes and electrons are equal.   

 

Extrinsic semiconductor 

Fermi level in extrinsic semiconductor 

In extrinsic semiconductor, the number of electrons in the conduction band and the number of holes 

in the valence band are not equal. Hence, the probability of occupation of energy levels in conduction 

band and valence band are not equal. Therefore, the Fermi level for the extrinsic semiconductor lies 

close to the conduction or valence band. 

1. Fermi level in n-type semiconductor 

In n-type semiconductor pentavalent impurity is added. Each pentavalent impurity donates a free 

electron. The addition of pentavalent impurity creates large number of free electrons in the conduction 

band.  

At room temperature, the number of electrons in the 

conduction band is greater than the number of holes in the 

valence band. Hence, the probability of occupation of 

energy levels by the electrons in the conduction band is 

greater than the probability of occupation of energy levels 

by the holes in the valence band. This probability of 

occupation of energy levels is represented in terms of Fermi 

level. Therefore, the Fermi level in the n-type semiconductor 

lies close to the conduction band. 

The Fermi level for n-type semiconductor is given as 

 

Where EF is the fermi level,    EC is the conduction band,   KB is the Boltzmann constant. 

T is the absolute temperature;   NC is the effective density of states in the conduction band. 

ND is the concentration of donor atoms. 

2. Fermi level in p-type semiconductor: 

In p-type semiconductor trivalent impurity is added. Each trivalent impurity creates a hole in the 

valence band and ready to accept an electron. The addition of trivalent impurity creates large number 

of holes in the valence band.  

At room temperature, the number of holes in the valence band 

is greater than the number of electrons in the conduction band. 

Hence, the probability of occupation of energy levels by the 

holes in the valence band is greater than the probability of 

occupation of energy levels by the electrons in the 

conduction band. This probability of occupation of energy 
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levels is represented in terms of Fermi level. Therefore, the Fermi level in the p-type semiconductor 

lies close to the valence band. 

The Fermi level for p-type semiconductor is given as 

Where NV is the effective density of states in the valence band. NA is the concentration of acceptor 

atoms. 

 

Expression for conductivity of semiconductors: 

Consider a semiconductor of area of cross section ‘A’, in which a current ‘I’ is flowing. Let ‘v’ be 

the velocity of electrons.  

The volume swept by the electrons/second=Av 

If ‘n’ is the number of electrons/unit volume and ‘e’ is the magnitude of electric charge on the 

electron, then the current is  

I=neAv 

Current density,  J=I/A=nev     ------- (1) 

Electron mobility, 𝜇𝑒=v/E     ------ (2)     where E is Electric field 

Substituting v from Eq(2) in Eq(1) we get 

J=neeE   -------- (3) 

But from Ohm’s law 

J=eE  ------- (4)         where e---conductivity is due to electrons in semiconductor materials 

Comparing Eq(3) and (4), we get 

 e = nee   -------- (5) 

Similarly, conductivity due to holes in semiconductor is  

h = peh   ------- (6)  where p----number of holes/unit volume and h-----mobility of holes 

Total conductivity,  =e + h = nee  + peh  =  e (ne  + ph)  ------------------- (7) 

For an intrinsic semiconductor, the concentrations of electrons & holes are equal, hence Eq.(7) can 

be written as 

𝜎 = 𝑛𝑖𝑒(𝜇𝑒 + 𝜇ℎ) -------------------------- (8) 

Substituting the value for ni in eqn. (8) we get 

𝜎 = 2 (
2𝜋 𝑚 𝑘𝐵𝑇 

ℎ2
)

3
2⁄   

(
𝑚ℎ

∗ 𝑚𝑒
∗

𝑚2
)

3
4⁄   

exp [− (
𝐸𝑔 

2𝑘𝐵𝑇
)] 𝑒(𝜇𝑒 + 𝜇ℎ)  ----------------(9) 

Eqn. (9) can be written as 

𝜎 = 𝐴 exp [− (
𝐸𝑔 

2𝑘𝐵𝑇
)] ---------------- (10) 
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Where 𝐴 = 2 (
2𝜋 𝑚 𝑘𝐵𝑇 

ℎ2 )
3

2⁄   

(
𝑚ℎ

∗ 𝑚𝑒
∗

𝑚2 )
3

4⁄   

𝑒(𝜇𝑒 + 𝜇ℎ)  ---------------- (11) 

Hence eqn. (10) can be rewritten as 

1

𝜌
= 𝐴 exp [− (

𝐸𝑔 

2𝑘𝐵𝑇
)] = 

𝑙

𝑅𝑎
    ---------------- (12) 

𝑅 =
𝑙

𝐴𝑎
exp [

𝐸𝑔 

𝑘𝐵𝑇
] = 𝐶 exp [

𝐸𝑔 

2𝑘𝐵𝑇
] ---------------- (13) 

Here C = l/Aa, where a = area of cross section ; l = length 

of the specimen. Taking natural log on both sides of eqn. 

(9) we get 

ln R = ln C  + Eg/2kBT   ---------------- (14) 

Eq.(13) is similar to equation of straight line y = mx + c, 

where y = ln R, x = 1/T, m = Eg/2kB and  c = ln C . If a plot 

is drawn between  ln R verses 1/T . The value of Eg can be 

determined from the slope of the straight line. Hence Eg = 2kB x slope. 

 

Hall Effect :  

In a conductor, the flow of electric current is the movement of charges due to the presence of an 

electric field. If a magnetic field is applied in a direction perpendicular to the direction of motion of 

the charges, the moving charges accumulate such that opposite charges lie on opposite faces of the 

conductor. This distribution of charges produces a potential difference across the material that 

opposes the migration of further charge. This creates a steady electrical potential as long as the 

charges are flowing in the material and the magnetic field is on. This is the Hall effect. 

Consider a rectangular slab of a semiconductor material in which 

a current I is flowing in the positive x-direction. Let the 

semiconducting material be of n-type, which means that the 

charge carriers are electrons. Let a magnetic field B be applied 

along the z-direction as shown in the figure. Under the influence 

of the magnetic field, the electrons experience the Lorentz force 

FL given by 

FL = -Bev  ------------ (1) 

Applying the Flemming’s left hand rule, we see that the force is 

exerted on the electrons in the negative y-direction. The electrons are therefore deflected downwards. 

As a result, the density of the electrons increases in the lower end of the material, due to which its 

bottom edge becomes negatively charged. On the other hand, the loss of electrons from the upper end 

causes the top edge of the metrical to become positively charged. Hence a potential VH, called the 

Hall voltage appears between the upper and lower surfaces of the semiconductor material which 

establishes an electric field EH called the Hall field across the conductor in the negative y-direction. 

The field EH, exerts an upward force FH on the electrons given by  

FH = -eEH ------------ (2) 
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Now as the deflection of electrons continues in the downward direction due to the Lorentz force FL, 

it also contributes to the growth of Hall field. As a result , the force FH which acts on the electron in 

the upward direction also increases. These two opposing forces reach equilibrium at which stage,  

FL = FH  

Using eqns. (1) & (2), above equation becomes 

-Bev  = -eEH or  EH = Bv ------------ (3) 

If d is the distance between the upper and lower surfaces of the slab, then, 

EH = VH/d   or   VH = EH d = Bvd   ------------ (4) 

Let w be the thickness of the material in the z-direction 

Its area of cross section normal to the direction of I is = wd. 

The current density J = I/wd  ------------ (5) 

But, we know that  J= nev =  ρv  ------------ (6) 

where n is carrier concentration and ρ is charge density 

Therefore, ρv = I/wd  or  v = I/wdρ  ------------ (7) 

Comparing equations (4) & (7) we get   VH = BI/ ρw     ρ=BI/VHw 

Using known I, B and w and measuring VH developed across the slab, ρ can be determined. By 

knowing the polarity on the top and bottom surfaces, the type of semiconductor can be determined.  

Hall coefficient (RH): 

For a given semiconductor, the Hall field EH depends upon the current density J and the applied 

field B. 

EH α JB 

EH = RH JB, where RH is called the Hall Coefficient 

Therefore,  

RH = EH /JB = Bv/ nevB = 1/ne 

RH = 1/ne=1/ρ 

 

Note: 

1. Positive value of RH indicates that the charge carriers are holes. 

2. Negative value of RH indicates that the charge carriers are electrons. 

 

 

Application of Hall Effect 

1. Hall Effect is used to find whether a semiconductor is N-type or P-type. 

2. Hall Effect is used to find carrier concentration. 
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3. Hall Effect is used to calculate the mobility of charge carriers (free electrons and holes). 

4. Hall Effect is used to measure conductivity. 

5. Hall Effect is used to measure a.c. power and the strength of magnetic field. 

6. Hall Effect is used in an instrument called Hall Effect multiplier which gives the output 

proportional to the product of two input signals. 

 

***************** All the best ***************** 


