Applied Physics Unit-1V

PART-I- Semiconductor

Metals have large number of free electrons - 102 m= and hence are good conductors of heat and
electricity. In the case of semiconductors, the electron densities are considerably low - 10°to 10 m-
% leading to lower electrical conductivities and the electron densities for few metals and

semiconductors are listed in the table

Element o (Qm)*t p (M) nm?
Metals

Cu 5.98 x 10’ 1.67 x 108 8.47 x 1078
Ag 6.30 x 107 1.58 x 10°® 5.86 x.10%8
Au 4.25 x 10’ 2.35x 107 5.90 x 10%
Zn 1.68 x 10’ 5.95x 108 13.2 x.10%8
Al 3.50 x 107 2.86 x 108 18.1 x.10%8
Semiconductors

Ge 2.17 0.47 2.2x 108
Si 1.56 x 10 640 8.72 x 10°
GaAs 5x108to 10° 2.03 x 10°

In metals only free electrons contribute to both electrical and thermal conduction, whereas in the case
of semiconductors in addition to electrons, holes also contribute. Thus, one needs to consider both

electrons and holes while studying the transport properties in semiconductors.

Expression for concentration of electrons in conduction band:

For a semiconductor in a conduction band, some lower energy states are filled with electrons at
room temperature. The concentration of electrons in conduction band is given by

n= [NEY(EYIE --rormmeemmeeee (2)
Where

N(E) = No. of electrons/unit energy/unit volume and f(E) =Fermi factor
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At room temperature, (E — Ef) > kT

f(E) = E- Ef>' = exp [— (Ek;j,f)] T '(4)

exp( KT

Hence eqn(1) becomes
n= f]fccw (;Ll_fsr) (2m2)3/2 (E — Ec)l/z exp [_ (Ek;if)] dE

Here EY2 has been replaced by (E-Ec)Y? since Ec is lower energy level in conduction band and @ is
the work function of the metal. The combination of Ec + ® turns out to be huge and we can replace
it by oo.

n=(33) @m)z [2(E—E) 2exp |- (= Ef)]dE ---------------- (5)

Evaluating the above integral by taking E = Ec +x and dE = dx and limit of the integration as 0 to «
(assuming the lowest energy almost to be equal to zero).
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Using gamma integral function we can write fooo(y)l/z exp (—y)dy =
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Where N, = 2 (h—ez) and equation (7) represents concentration of electrons in conduction

band



Expression for concentration of holes in valence band:

The concentration of holes in valence band can be calculated as follows

n= [ NE)L = f(E)]dE  -emmermmeemm ()

By substituting the values for N(E) & f(E) and solving the integral as we did for the concentration
of electrons in conduction band we can arrive at the following equation
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Where N, = 2 (Zmr;l’;kB T) 2 represents the concentration of holes in valence band

and equation (2) represents concentration of holes in valence band

Expression for intrinsic carrier concentration:

In an intrinsic semiconductor, the concentration of holes and electrons are equal, i.e.,. n = p. The
product of hole and electron concentrations for a given material is constant at a given temperature. If
impurity is added to increase n, there will be corresponding decrease in p so that the product n x p
remains constant and is sometimes called law of mass action. Therefore in an intrinsic semiconductor

nX P = NiX pi = N
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Multiply and divide on right side by m?
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Substituting (Ec — Ev) = Eg, we get
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Substituting for constants we get
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Fermi level in an intrinsic semiconductor:

The Fermi-level in an intrinsic semiconductor is nearly midway between the conduction and
valence band.

Band energy
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In an intrinsic semiconductor, the concentrations of electrons and holes are equal. Therefore we can
write
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If the effective masses of the holes and electrons are equal, then
_E,+E,
f= "2
Hence it is clear from the above equation that for an intrinsic semiconductor, the Fermi level lies at
the middle of the energy gap, when the effective masses of the holes and electrons are equal.

Extrinsic semiconductor

Fermi level in extrinsic semiconductor
In extrinsic semiconductor, the number of electrons in the conduction band and the number of holes
in the valence band are not equal. Hence, the probability of occupation of energy levels in conduction
band and valence band are not equal. Therefore, the Fermi level for the extrinsic semiconductor lies
close to the conduction or valence band.

1. Fermi level in n-type semiconductor
In n-type semiconductor pentavalent impurity is added. Each pentavalent impurity donates a free
electron. The addition of pentavalent impurity creates large number of free electrons in the conduction
band.

At room temperature, the number of electrons in the
conduction band is greater than the number of holes in the
valence band. Hence, the probability of occupation of
energy levels by the electrons in the conduction band is
greater than the probability of occupation of energy levels
by the holes in the valence band. This probability of
occupation of energy levels is represented in terms of Fermi
level. Therefore, the Fermi level in the n-type semiconductor

™~ Fermi level

lies close to the conduction band.

The Fermi level for n-typg semiconductor is given as
EF = EC - KBT log\T
Np

Where Er is the fermi level, Ec is the conduction band, Kz is the Boltzmann constant.
T is the absolute temperature; Nc is the effective density of states in the conduction band.
Nbp is the concentration of donor atoms.

2. Fermi level in p-type semiconductor:
In p-type semiconductor trivalent impurity is added. Each trivalent impurity creates a hole in the
valence band and ready to accept an electron. The addition of trivalent impurity creates large number
of holes in the valence band.

At room temperature, the number of holes in the valence band
is greater than the number of electrons in the conduction band.
Fermiizvel - Hence, the probability of occupation of energy levels by the
el } holes in the valence band is greater than the probability of
occupation of energy levels by the electrons in the
conduction band. This probability of occupation of energy
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levels is represented in terms of Fermi level. Therefore, the Fermi level in the p-type semiconductor
lies close to the valence band.
i Ny
The Fermi level for p-type semiconductor is given as  Er = Ey + KgT IOSN—
A
Where Nv is the effective density of states in the valence band. Na is the concentration of acceptor
atoms.

Expression for conductivity of semiconductors:

Consider a semiconductor of area of cross section ‘A’, in which a current ‘I’ is flowing. Let ‘v’ be
the velocity of electrons.

The volume swept by the electrons/second=Av

If ‘n’ is the number of electrons/unit volume and ‘e’ is the magnitude of electric charge on the
electron, then the current is

I=neAv
Current density, J=I/A=nev = ------- Q)
Electron mobility, u,=v/IE = ------ (2) where E is Electric field

Substituting v from Eq(2) in Eq(1) we get

Gh = peun ------- (6) where p----number of holes/unit volume and un-----mobility of holes
Total conductivity, 6 =ce+ oh = nNeple + Peun = € (Ne + PUh) -=-=-=--===-====-=- (7)

For an intrinsic semiconductor, the concentrations of electrons & holes are equal, hence Eq.(7) can
be written as

e T (T o T R (8)
Substituting the value for ni in egn. (8) we get
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Eqgn. (9) can be written as

o =4 exp |- (55)] s (10)
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Hence eqn. (10) can be rewritten as t
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Here C = I/Aa, where a = area of cross section ; | = length = dy
of the specimen. Taking natural log on both sides of egn. = dx
(9) we get T Slope = dy/dx = EE /2 kh
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Eq.(13) is similar to equation of straight line y = mx + c,
wherey =InR, x =1/T, m=Eg/2kg and c=In C . If a plot 1T
is drawn between In R verses 1/T . The value of Eg can be

determined from the slope of the straight line. Hence E4 = 2kg X slope.

Hall Effect :

In a conductor, the flow of electric current is the movement of charges due to the presence of an
electric field. If a magnetic field is applied in a direction perpendicular to the direction of motion of
the charges, the moving charges accumulate such that opposite charges lie on opposite faces of the
conductor. This distribution of charges produces a potential difference across the material that
opposes the migration of further charge. This creates a steady electrical potential as long as the
charges are flowing in the material and the magnetic field is on. This is the Hall effect.

v Probe Consider a rectangular slab of a semiconductor material in which
a current | is flowing in the positive x-direction. Let the
semiconducting material be of n-type, which means that the

®
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| | %_,> charge carriers are electrons. Let a magnetic field B be applied
d along the z-direction as shown in the figure. Under the influence
"""" ) of the magnetic field, the electrons experience the Lorentz force
B// i FL given by
S STV J—— (1)

Applying the Flemming’s left hand rule, we see that the force is
exerted on the electrons in the negative y-direction. The electrons are therefore deflected downwards.
As a result, the density of the electrons increases in the lower end of the material, due to which its
bottom edge becomes negatively charged. On the other hand, the loss of electrons from the upper end
causes the top edge of the metrical to become positively charged. Hence a potential V', called the
Hall voltage appears between the upper and lower surfaces of the semiconductor material which
establishes an electric field En called the Hall field across the conductor in the negative y-direction.
The field En, exerts an upward force Fx on the electrons given by

v



Now as the deflection of electrons continues in the downward direction due to the Lorentz force FL,
it also contributes to the growth of Hall field. As a result , the force FH which acts on the electron in
the upward direction also increases. These two opposing forces reach equilibrium at which stage,

FL=Fn
Using eqgns. (1) & (2), above equation becomes
-Bev =-eEn or En=BV ------------ 3)
If d is the distance between the upper and lower surfaces of the slab, then,
EH=Vnw/d or VW=End=Bvd ------------ ()]
Let w be the thickness of the material in the z-direction
Its area of cross section normal to the direction of | is = wd.
The current density J = l/wd ------------ (5)
But, we know that J=nev= pv ------------ (6)
where n is carrier concentration and p is charge density
Therefore, pv=1/wd or v=Iwdp ------------ (7)
Comparing equations (4) & (7) we get Vu=BIl/ pw = p=BI/Vxw

Using known I, B and w and measuring V1 developed across the slab, p can be determined. By
knowing the polarity on the top and bottom surfaces, the type of semiconductor can be determined.

Hall coefficient (Rn):

For a given semiconductor, the Hall field Ex depends upon the current density J and the applied
field B.

EnaJB

En = Ry JB, where Ry is called the Hall Coefficient
Therefore,

Ru = Ex /JB = Bv/ nevB = 1/ne

Ru = 1/ne=1/p

Note:

1. Positive value of Ru indicates that the charge carriers are holes.
2. Negative value of R indicates that the charge carriers are electrons.

Application of Hall Effect

1. Hall Effect is used to find whether a semiconductor is N-type or P-type.

2. Hall Effect is used to find carrier concentration.



Hall Effect is used to calculate the mobility of charge carriers (free electrons and holes).
Hall Effect is used to measure conductivity.

Hall Effect is used to measure a.c. power and the strength of magnetic field.

Hall Effect is used in an instrument called Hall Effect multiplier which gives the output

proportional to the product of two input signals.
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