

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22PH1BSPCV / 22PH2BSPCV

Course: Applied Physics for Civil Engineering

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space = 8.85×10^{-12} F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		Module - I	CO	PO	Marks
1	a)	Derive an expression for energy density of radiation in terms of Einstein's co-efficient's under thermal equilibrium.	CO 1	PO 1	8
	b)	Describe the construction and working of a semiconductor diode laser with an energy level diagram.	CO 1	PO 1	8
	c)	A laser is emitting a laser beam with an average power of 4.5 mW. Find the number of photons emitted per second by the laser. The wavelength of the emitted radiation is 6328 Å.	CO 1	PO 2	4
OR					
2	a)	Define co-efficient of attenuation and give its formula. Discuss the three causes of attenuation.	CO 1	PO 1	8
	b)	Discuss the different types of optical fibers with suitable diagrams.	CO 1	PO 1	8
	c)	Fractional index change of an optical fiber and refractive index of core are 0.5 % and 1.533, respectively. Calculate the angle of acceptance.	CO 1	PO 2	4
Module - II					
3	a)	Define SHM and mention any two examples. Derive the differential equation for SHM.	CO 1	PO 1	8
	b)	Give the theory of damped vibrations and discuss the case of over damping.	CO 1	PO 1	8

		c)	A damped oscillator of frequency 10 Hz starts with an initial amplitude of 10 cm. After 25 seconds, its amplitude is measured to be 9 cm. Calculate relaxation time and quality factor.	CO 1	PO 2	4
			Module - III			
4	a)		What are Miller indices? Derive an expression for interplanar distance in terms of Miller indices.	CO 1	PO 1	8
	b)		Describe how Bragg's spectrometer is used to determine the wavelength of an X-ray beam?	CO 1	PO 1	8
	c)		Draw the following planes in a cubic unit cell (011), (102), (132) and (200).	CO 1	PO 2	4
			OR			
5	a)		Define unit cell. Describe the seven crystal systems with neat sketches.	CO 1	PO 1	8
	b)		Describe the principle, construction and working of X-ray Photoelectron Spectroscope.	CO 1	PO 1	8
	c)		The interplanar spacing of (110) plane is 2 \AA for a FCC crystal. Find atomic radius.	CO 1	PO 2	4
			Module - IV			
6	a)		State Hooke's law. Describe stress-strain diagram.	CO 1	PO 1	8
	b)		Derive an expression for couple per unit twist of a solid cylinder.	CO 1	PO 1	8
	c)		A wire of 3 m long and $0.625 \times 10^{-4} \text{ m}^2$ in cross section is found to stretch 0.003 m under a tension of 1200 kg. What is the Young's modulus of the material of the wire?	CO 1	PO 2	4
			Module - V			
7	a)		Discuss the classification of earthquakes.	CO 1	PO 1	8
	b)		What are fire hazards? Discuss the causes for fire hazards.	CO 1	PO 1	8
	c)		The intensity of one earthquake is 100 times the intensity of the other. If the magnitude of the first earthquake is 8.9, estimate the magnitude of the other.	CO 1	PO 2	4
