

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22PH1BSPCV / 22PH1BSPCV

Max Marks: 100

Course: Applied Physics for Civil Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each module.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space, $\epsilon_0 = 8.85 \times 10^{-12}$ F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

			MODULE - I			CO	PO	Marks
1	a)	Describe the construction and working of semiconductor diode LASER.	CO1	PO1		08		
	b)	Define attenuation. Discuss the various loss factors in optical fiber communication.						
	c)	A laser medium at thermal equilibrium temperature 300 K has two energy levels with a wavelength separation of $1\mu\text{m}$. Find the rate of population densities of the upper and lower energy levels.	CO2	PO2		04		
OR								
2	a)	Derive an expression for energy density of radiation under thermal equilibrium conditions in terms of Einstein's coefficients.	CO1	PO1		08		
	b)	Write a note on fiber optic displacement sensor and fiber optic temperature sensor.	CO1	PO1		08		
	c)	A step index optical fiber has diameter of $60\ \mu\text{m}$, a core index of 1.48 and the cladding of 1.41. If the wavelength of the light source is $0.81\ \mu\text{m}$, determine the number of modes present in the fiber.	CO2	PO2		04		
MODULE - II								
3	a)	Derive an expression for period and frequency of a particle exhibiting simple harmonic motion.	CO1	PO1		08		
	b)	Explain briefly the three cases of damping vibrations.						
	c)	The Q factor of a spring loaded with 0.3 kg is 60. It vibrates with a frequency of 2 Hz. Calculate the force constant.	CO1	PO1	CO2	04	PO2	
OR								
4	a)	Obtain an expression for amplitude of forced vibration.	CO1	PO1		08		

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Mention any two characteristics of periodic motion. Discuss the conversion of kinetic energy to potential energy in SHM	CO1	PO1	08
	c)	A 3.94 kg mass extends a spring 15.7 cm from its unstretched position. This mass is removed and a 0.520 kg object is suspended from the same spring and is set into oscillations. Find the period of oscillation.	CO2	PO2	04

MODULE - III

5	a)	Derive the relation between atomic radius and lattice constant in SCC, BCC and FCC lattice.	CO1	PO1	08
	b)	Elucidate briefly the principle, construction and working of X-ray photoelectron spectroscopy (XPS).	CO1	PO1	08
	c)	Draw the following planes in a cubic unit cell $(1\ 0\ 0)$, $(0\ 1\ 1)$, $(\bar{1}\ \bar{1}\ 2)$ and $(\bar{1}\ 3\ 2)$.	CO2	PO2	04

OR

6	a)	State Bragg's law. Describe the construction and working of Bragg's X-ray diffractometer.	CO1	PO1	08
	b)	With a neat diagram explain seven crystal systems.	CO1	PO1	08
	c)	First order spectrum is formed when the x-rays of wavelength 1.5 Å is incident on a crystal at 12° . Calculate the interplanar spacing of the crystal.	CO2	PO2	04

MODULE - IV

7	a)	Derive an expression for couple per unit twist of a solid cylinder.	CO1	PO1	08
	b)	Explain tensile stress and compressive stress. Show that shearing stress is equivalent to an equal linear tensile stress and an equal linear compressive stress at right angles to each other.	CO1	PO1	08
	c)	Calculate the force required to produce an extension of 1 mm in steel wire of length 2 m and diameter 1mm. Young's modulus for steel is $2 \times 10^{11} \text{ N/m}^2$.	CO2	PO2	04

OR

8	a)	Deduce an expression for the bending moment of a rectangular beam.	CO1	PO1	08
	b)	Define stress and strain. Obtain the relation between elastic constants Y , K , η and σ .	CO1	PO1	08
	c)	Calculate the torque required to twist a wire of length 1.5 m, radius $0.0425 \times 10^{-2} \text{ m}$, through an angle $\left(\frac{\pi}{45}\right)$ radian, if the value of rigidity modulus of its material is $8.3 \times 10^{10} \text{ N/m}^2$	CO2	PO2	04

MODULE - V

9	a)	Summarize the measurement of earthquake and their adverse effects.	CO1	PO1	08
	b)	Discuss the engineering structures to withstand Tsunami and their adverse effects.	CO1	PO1	08

	c)	The intensity of one earthquake is 100 times the intensity of the other. If the magnitude of the first earthquake is 8.9 estimate the magnitude of the other.	CO2	PO2	04
OR					
10	a)	Describe the causes of forest fires. Explain the detection and monitoring of forest fires using remote sensing.	CO1	PO1	08
	b)	Write a brief note on types of land sliding.	CO1	PO1	08
	c)	Calculate the intensity of earthquake of magnitude 6.5 assuming the base intensity as I_0 .	CO1	PO1	04

B.M.S.C.E. - ODD SEM 2024-25