

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Programme: B.E.

Semester: I / II

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22PH1BSPCV / 22PH2BSPCV

Max Marks: 100

Course: Applied Physics for Civil Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space = 8.85×10^{-12} F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

		Module - I	CO	PO	Marks
1	a)	Mention the characteristics of LASER. Write a note on application of LASER in the measurement of pollutants in atmosphere.	CO1	PO1	08
	b)	Explain briefly the interaction of radiation with matter.	CO1	PO1	08
	c)	The ratio of population of two energy levels is 1.059×10^{-30} . Find the wavelength of light emitted at 300 K.	CO1	PO2	04
		OR			
2	a)	Define attenuation and discuss the causes of attenuation.	CO1	PO1	08
	b)	Define numerical aperture. With a neat diagram derive an expression for numerical aperture in terms of refractive indices of core and clad of an optical fiber.	CO1	PO1	08
	c)	Calculate the numerical aperture and angle of acceptance of a given optical fiber if the refractive indices of the core and cladding are 1.563 and 1.498, respectively.	CO1	PO2	04
		Module - II			
3	a)	What are forced oscillations? Arrive at the expressions for amplitude and phase of the forced oscillations.	CO1	PO1	08
	b)	Explain logarithmic decrement, relaxation time and quality factor for a damped oscillator.	CO1	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	A particle executes SHM of amplitude 5 cm. When the particle is 3 cm from the mean position its acceleration is found to be 48 cm s^{-2} . Calculate its velocity at the same instant.	CO1	PO2	04
		Module - III			
4	a)	What are Miller indices? Derive an expression for interplanar spacing in terms of Miller indices.	CO1	PO1	08
	b)	Describe powder diffraction method for the determination of crystal structure with the help of a suitable diagram.	CO1	PO1	08
	c)	Find the interplanar spacing for a (1 2 1) plane in a simple cubic lattice whose lattice constant is 0.412 nm.	CO1	PO2	04
		OR			
5	a)	State Bragg's law. Describe how Bragg's X-ray diffractometer is used to determine the wavelength of an X-ray beam?	CO1	PO1	08
	b)	Obtain the relation between atomic radius and lattice constant in SC, BCC and FCC crystal structures.	CO1	PO1	08
	c)	A beam of X-rays of wavelength 0.071 nm is diffracted by (110) plane of cubic lattice with lattice constant 0.28 nm. Find the glancing angle for the second order diffraction.	CO1	PO2	04
		Module - IV			
6	a)	State Hooke's law. Show the relation between K, Y, n and σ , where the symbols have their usual meaning.	CO1	PO1	08
	b)	Derive an expression for couple per unit twist of a solid cylinder.	CO1	PO1	08
	c)	Calculate the twisting couple on a solid shaft of length 1.5 m and diameter 120 mm, when it is twisted through an angle 0.6° . The co-efficient of rigidity for the material of shaft may be taken to be $93 \times 10^9 \text{ N/m}^2$.	CO1	PO2	04
		Module - V			
7	a)	What is a Tsunami? Write a brief note on causes of tsunami.	CO1	PO1	08
	b)	What are fire hazards? Discuss the causes for fire hazards.	CO1	PO1	08
	c)	How many times more intense is an earthquake that measures 6.2 on the Richter scale than an earthquake that measures 5.1 on the Richter scale?	CO1	PO2	04
