

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: ECE and EEE

Duration: 3 hrs.

Course Code: 22PH1BSPEE / 22PH2BSPEE

Max Marks: 100

Course: Applied Physics for Electrical Stream

Instructions: 1. Answer any FIVE full questions, choosing one full question from each module.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space, $\epsilon_0 = 8.85 \times 10^{-12}$ F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

Module – I			CO	PO	Marks
1	a)	Explain de-Broglie hypothesis and derive an expression for de Broglie wavelength of an electron in terms of kinetic energy.	<i>CO1</i>	<i>PO</i> 1	8
	b)	State Heisenberg's uncertainty principle. Based on this principle, prove the nonexistence of electrons in the nucleus of an atom.	<i>CO1</i>	<i>PO1</i>	8
	c)	An electron is trapped in a potential well of width 0.1 nm and infinite height. Find the energy of electron in the first excited state.	<i>CO1</i>	<i>PO2</i>	4
OR					
2	a)	What is group velocity? Show that group velocity is equal to particle velocity.	<i>CO1</i>	<i>PO1</i>	8
	b)	Solve Schrodinger wave equation for a particle in 1-D potential well of infinite height and hence obtain the normalized wave function and energy Eigen values.	<i>CO1</i>	<i>PO1</i>	8
	c)	An electron has a speed of 4.8×10^5 m/s and is measured to an accuracy of 0.012%. With what accuracy position of an electron can be located?	<i>CO1</i>	<i>PO2</i>	4
Module – II					
3	a)	Derive an expression for energy density of radiation in terms of Einstein's A & B coefficients.	<i>CO1</i>	<i>PO1</i>	8
	b)	Mention any three advantages of optical fibers. With neat block diagrams, explain the application of optical fiber in point-to-point communication.	<i>CO1</i>	<i>PO1</i>	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		c)	A laser operating at 632 nm emits 3.2×10^{16} photons per second. Calculate percentage of power converted into coherent light energy if the input power is 100 W.	CO1	PO2	4
			OR			
4	a)		With neat diagrams, explain the construction and working of He-Ne laser.	CO1	PO1	8
	b)		What is numerical aperture? Derive an expression for numerical aperture of an optical fiber and hence arrive at the condition for propagation of light.	CO1	PO1	8
	c)		Find the attenuation in an optical fiber of length 500 m, when a light signal of power 100 mW emerges out of the fiber with a power of 90 mW.	CO1	PO2	4
			Module - III			
5	a)		Mention the postulates of quantum free electron theory. Discuss any two merits of quantum free electron theory.	CO1	PO1	8
	b)		Discuss different types of polarizations in dielectric materials due to applied electric field with suitable diagrams.	CO1	PO1	8
	c)		Find the temperature at which there is 1% probability that a state with an energy 0.5 eV above the Fermi energy is occupied.	CO1	PO2	4
			OR			
6	a)		Derive an expression for internal field in the case of linear array of atoms in solid dielectric.	CO1	PO1	8
	b)		Define Fermi energy and Fermi temperature. Discuss the dependence of Fermi factor on temperature and energy with suitable graph.	CO1	PO1	8
	c)		An elemental solid dielectric material has polarizability 7×10^{-40} Fm ² . Assuming the internal field is to be Lorentz field, calculate the dielectric constant for the material if the material has 3×10^{28} atoms/m ³ .	CO1	PO2	4
			Module - IV			
7	a)		Explain Hall effect in semiconductors. Obtain an expression for Hall voltage in terms of Hall co-efficient.	CO1	PO1	8
	b)		Obtain an expression for concentration of electrons in conduction band of a semiconductor.	CO1	PO1	8
	c)		The intrinsic carrier density in n-type silicon is 1.5×10^{19} /m ³ and density of phosphorous is 10^{23} atoms/m ³ . The electron and hole mobility are $0.135 \text{ m}^2/\text{Vs}$ and $0.048 \text{ m}^2/\text{Vs}$, respectively. What is its conductivity before and after addition of atoms?	CO1	PO2	4

			OR			
	8	a)	Obtain an expression for electrical conductivity of semiconductor and hence arrive at energy band gap relation.	<i>CO1</i>	<i>PO1</i>	8
		b)	Discuss the principle, construction and working of a semiconductor diode LASER with suitable diagrams.	<i>CO1</i>	<i>PO1</i>	8
		c)	Calculate the power responsivity of a photodiode having quantum efficiency of 75% operating at a wavelength of 550 nm.	<i>CO1</i>	<i>PO2</i>	4
			Module - V			
	9	a)	What are soft and hard magnetic materials? Mention any four properties and two applications.	<i>CO1</i>	<i>PO1</i>	8
		b)	What are superconductors? Describe different types of superconductors with M-H graph and examples.	<i>CO1</i>	<i>PO1</i>	8
		c)	Calculate the flux density of a material placed in magnetic field of intensity 1000 A/m . The magnetic susceptibility is -0.42×10^{-3} .	<i>CO1</i>	<i>PO2</i>	4
			OR			
	10	a)	What are ferromagnetic materials? Explain the hysteresis curve of ferromagnetic material based on domain concept.	<i>CO1</i>	<i>PO1</i>	8
		b)	Elucidate BCS theory of superconductivity and show that superconductors are diamagnetic material.	<i>CO1</i>	<i>PO1</i>	8
		c)	The transition temperature for lead is 7.2 K. However at 5 K, it loses the superconductivity if subjected to magnetic field of $3.3 \times 10^4 \text{ A/m}$. Find the maximum value of magnetic field which will allow the material to retain its superconductivity at 0 K.	<i>CO1</i>	<i>PO2</i>	4
