

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B. M. S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## September 2024 Supplementary Examinations

**Programme: B.E.**

**Branch: Mechanical Engineering stream**

**Course Code: 22PH2BSPME**

**Course: Applied Physics for Mechanical stream**

**Semester: II**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

### Physical constants:

Mass of electron,  $m_e = 9.1 \times 10^{-31}$  kg

Electronic charge,  $e = 1.602 \times 10^{-19}$  C

Boltzmann constant,  $k_B = 1.38 \times 10^{-23}$  J/K

Permittivity of free space =  $8.85 \times 10^{-12}$  F/m

Speed of light,  $c = 3 \times 10^8$  m/s

Planck constant,  $h = 6.626 \times 10^{-34}$  Js

Mass of neutron,  $m_n = 1.67 \times 10^{-27}$  kg

Mass of proton,  $m_p = 1.67 \times 10^{-27}$  kg

| Q. No. | MODULE - I                                                                                                                                                                                                          | CO   | PO   | Marks    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|
| 1.(a)  | Derive an expression for the energy density of radiation under equilibrium conditions in terms of Einstein's coefficients.                                                                                          | CO 1 | PO 1 | <b>8</b> |
| (b)    | What is numerical aperture? Derive an expression for the numerical aperture of an optical fiber.                                                                                                                    | CO 1 | PO 1 | <b>8</b> |
| (c)    | In a LASER system, the energy difference between two energy levels is $2 \times 10^{-19}$ Joules. The average output power of a LASER beam is found to be 4 mW. Calculate the number of photons emitted per second. | CO 1 | PO 2 | <b>4</b> |
|        | <b>OR</b>                                                                                                                                                                                                           |      |      |          |
| 2.(a)  | Describe the construction and working of semiconductor laser with a neat schematic and energy level diagram.                                                                                                        | CO 1 | PO 1 | <b>8</b> |
| (b)    | Discuss the different types of optical fibers with neat diagrams.                                                                                                                                                   | CO 1 | PO 1 | <b>8</b> |
| (c)    | The attenuation of light in an optical fiber is 3.6 db/km. What fraction of its initial intensity remains after 3 km.                                                                                               | CO 1 | PO 2 | <b>4</b> |
|        | <b>MODULE - II</b>                                                                                                                                                                                                  |      |      |          |
| 3.(a)  | Define free oscillations. Derive the differential equation for free oscillations and hence obtain the expression for natural frequency of vibrations.                                                               | CO 1 | PO 1 | <b>8</b> |

|                     |                                                                                                                                                                                                                    |      |      |   |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---|
| (b)                 | What are forced vibrations? Obtain an expression for amplitude of vibration of a body undergoing forced vibrations.                                                                                                | CO 1 | PO 1 | 8 |
| (c)                 | The amplitude for the resonance of a spring-mass system is 5 cm. If the angular frequency of the driving force is 100 rad/sec and the damping constant is 50 gm/sec, then find the amplitude of the driving force. | CO 1 | PO 2 | 4 |
| <b>MODULE - III</b> |                                                                                                                                                                                                                    |      |      |   |
| 4.(a)               | Mention any four assumptions of quantum free electron theory. Discuss any two success of quantum free electron theory.                                                                                             | CO 1 | PO 1 | 8 |
| (b)                 | Describe the experiment to determine the thermal conductivity of a poor conductor by Lee-Charlton's method with neat diagram.                                                                                      | CO 1 | PO 1 | 8 |
| (c)                 | Find the temperature at which there is 1% probability of occupation of an energy level 0.5 eV above Fermi level.                                                                                                   | CO 1 | PO 2 | 4 |
| <b>OR</b>           |                                                                                                                                                                                                                    |      |      |   |
| 5.(a)               | Define Fermi energy and Fermi factor. Discuss the variation of Fermi factor with temperature and energy with suitable graph.                                                                                       | CO 1 | PO 1 | 8 |
| (b)                 | State Wiedemann-Franz law. Deduce the classical expression for thermal conductivity of a conductor.                                                                                                                | CO 1 | PO 1 | 8 |
| (c)                 | Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K and 400 K in a material.                                                                                 | CO 1 | PO 2 | 4 |
| <b>MODULE - IV</b>  |                                                                                                                                                                                                                    |      |      |   |
| 6.(a)               | State Hook's law and explain different moduli of elasticity in detail.                                                                                                                                             | CO 1 | PO 1 | 8 |
| (b)                 | What is couple force? Derive an expression for couple per unit twist when one end of the cylinder is fixed and couple is applied at the other end.                                                                 | CO 1 | PO 1 | 8 |
| (c)                 | Calculate the shearing force required to distort a block of steel by 0.75 cm, if its thickness is 15 cm and surface area is $6 \text{ cm}^2$ . The shear modulus for steel is $7 \times 10^{10} \text{ Nm}^{-2}$ . | CO 1 | PO 2 | 4 |
| <b>MODULE - V</b>   |                                                                                                                                                                                                                    |      |      |   |
| 7.(a)               | What are Miller indices? Derive an expression for interplanar spacing in terms of Miller indices.                                                                                                                  | CO 1 | PO 1 | 8 |
| (b)                 | Define atomic packing factor. Obtain the atomic radius and calculate the atomic packing factor for BCC and FCC structures.                                                                                         | CO 1 | PO 1 | 8 |
| (c)                 | Calculate the crystal size when the peak width is 0.5 cm and the peak position is $25^\circ$ for a simple cubic crystal. The wavelength of the X-ray used is $1.54 \text{ \AA}$ and Scherer's constant, $k=0.94$ . | CO 1 | PO 2 | 4 |

\*\*\*\*\*