

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: Computer Science Stream

Duration: 3 hrs.

Course Code: 22PH1BSPCS / 22PH2BSPCS

Max Marks: 100

Course: Applied Physics for Computer Science Stream

Date: 30.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space = 8.85×10^{-12} F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

			MODULE - I		CO	PO	Marks
			1	a)			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.				Describe the construction and working of semiconductor LASER with energy level diagram.	CO1	PO1	8
				b)	CO1	PO1	8
				c)	CO1	PO2	4
OR							
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)		Derive an expression for energy density of radiation in terms of Einstein's A & B coefficients.	CO1	PO1	8
		b)		Discuss point-to-point optical fiber communication. Also, mention any two disadvantages over the conventional communications system.	CO1	PO1	8
		c)		Light gathering capacity of an optical fiber is 0.479. If fractional index change is 0.005, calculate the refractive index of cladding.	CO1	PO2	4

MODULE - II					
3	a)	Define phase velocity and group velocity and obtain the relation between them in terms of wavelength.	<i>COI</i>	<i>POI</i>	8
	b)	Apply Schrodinger's wave equation to a particle confined to one dimensional potential well of infinite height, hence obtain the expressions for eigen values and eigen functions.	<i>COI</i>	<i>POI</i>	8
	c)	The speed of an electron is 100 m/s. The inherent uncertainty in its measurement is 0.06%. Evaluate the uncertainty that arises in the measurement of its position.	<i>COI</i>	<i>PO2</i>	4
OR					
4	a)	What is wave function? Set up one dimensional time independent Schrodinger wave equation for a particle moving along x-axis.	<i>COI</i>	<i>POI</i>	8
	b)	State Heisenberg's uncertainty principle. Show that electron cannot exist inside the nucleus.	<i>COI</i>	<i>POI</i>	8
	c)	Calculate the de-Broglie wavelength associated with an electron having kinetic energy of 100 eV.	<i>COI</i>	<i>PO2</i>	4
MODULE - III					
5	a)	What is Fermi factor? Discuss the variation of the Fermi factor with temperature and energy with suitable graph.	<i>COI</i>	<i>POI</i>	8
	b)	What is polarization in dielectrics? Describe any three types of polarization.	<i>COI</i>	<i>POI</i>	8
	c)	An elemental solid dielectric material has a polarizability of 7×10^{-40} Fm ² . Assuming the internal field to be Lorentz field. Calculate the dielectric constant for the material, If the material has 3×10^{28} atoms/m ³ .	<i>COI</i>	<i>PO2</i>	4
MODULE - IV					
6	a)	Derive an expression for the electrical conductivity of an intrinsic semiconductor and arrive at an expression for energy band gap.	<i>COI</i>	<i>POI</i>	8
	b)	Describe the classification of superconductors into soft and hard superconductors by using M-H graphs.	<i>COI</i>	<i>POI</i>	8

	c)	The superconducting transition temperature of lead is 7.26 K. The initial field at 0 kelvin is 64×10^3 A/m. Calculate the critical field at 5 K.	CO1	PO2	4
		MODULE - V			
7	a)	Mention the properties of Qubit. Elucidate the difference between Classical and Quantum computing.	CO1	PO1	8
	b)	Describe the construction and working of the Controlled NOT Gate, by mentioning its Matrix, Circuit, and Truth table.	CO1	PO1	8
	c)	A linear operator X operates such that $X 0\rangle = 1\rangle$, and $X 1\rangle = 0\rangle$ Find the matrix representation of X.	CO1	PO2	4

B.M.S.C.E. - EVEN SEM 2022/23