

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Programme: B.E.

Semester: I / II

Branch: Computer Science Stream

Duration: 3 hrs.

Course Code: 22PH1BSPCS / 22PH2BSPCS

Max Marks: 100

Course: Applied Physics for Computer Science stream

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space = 8.85×10^{-12} F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

			Module - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the general conditions for laser action. Explain the construction and working of semiconductor laser with suitable diagram.	<i>CO1</i>	<i>PO1</i>	8
		b)	Define attenuation. Discuss the causes of signal attenuation in an optical fiber.	<i>CO1</i>	<i>PO1</i>	8
		c)	The ratio of population of two energy levels is 2.2×10^{-30} . Find the wavelength of light emitted by spontaneous emission at 300 K.	<i>CO1</i>	<i>PO2</i>	4
			OR			
	2	a)	Define numerical aperture. Show that the light gathering capacity of an optical fiber is equal to $\sqrt{n_1^2 - n_2^2}$, where the terms have their usual meaning.	<i>CO1</i>	<i>PO1</i>	8
		b)	If A and B are Einstein coefficients, then show that $B_{21} = B_{12}$ where the notations have their usual meaning	<i>CO1</i>	<i>PO1</i>	8
		c)	An optical fiber is immersed in an oil bath of RI 1.06. If the numerical aperture of the fiber is 0.39 and if the difference in RIs of the material of its core and the cladding is 0.05, calculate the RI of the material of the core.	<i>CO1</i>	<i>PO2</i>	4
			Module - II			
	3	a)	Define group velocity. Deduce the relation of group velocity and particle velocity.	<i>CO1</i>	<i>PO1</i>	8
		b)	Starting from the normalized wave function for a particle confined in a 1-D potential well, discuss the wave function, probability density and energy Eigen values for the ground and the first excited states.	<i>CO1</i>	<i>PO1</i>	8

	c)	A particle of mass $0.55 \text{ MeV}/c^2$ has a kinetic energy of 70 eV. Calculate the de-Broglie wavelength and group velocity of the wave.	CO1	PO2	4
		OR			
4	a)	Discuss the physical significance of Heisenberg's uncertainty principle. Also prove the non-existence of electron within the nucleus of an atom.	CO1	PO1	8
	b)	Mention any two properties of wave function and setup the expression for 1-D time independent Schrodinger wave equation.	CO1	PO1	8
	c)	Compare the de Broglie wavelengths of electron and neutron moving with one tenth of the velocity of light.	CO1	PO2	4
		Module - III			
5	a)	Define Fermi factor and Fermi energy. Discuss Fermi factor for the cases $E < E_F$, $E > E_F$ and $E = E_F$ at $T = 0 \text{ K}$ with neat illustration.	CO1	PO1	8
	b)	Discuss electronic polarization. Deduce an expression for electronic polarizability exhibited by a pure elemental dielectric material.	CO1	PO1	8
	c)	Calculate the Fermi energy of sodium assuming that the metal has one free electron per atom. Given the density of sodium = 970 kg/m^3 and atomic weight of sodium = 22.99.	CO1	PO2	4
		Module - IV			
6	a)	Discuss the phenomenon of Hall effect in a semiconductor with neat sketch and hence deduce an expression for Hall potential in terms of Hall coefficient.	CO1	PO1	8
	b)	Write a note on BCS theory in superconductors. Discuss the application of superconductors in Maglev vehicle with a neat sketch.	CO1	PO1	8
	c)	Calculate the critical current for a wire of lead having a diameter of 1 mm at 5.2 K. Critical temperature for lead is 8.18 K and $H_0 = 6.5 \times 10^4 \text{ Am}^{-1}$	CO1	PO2	4
		Module - V			
7	a)	Explain Moore's law and its end. List out the differences between classical and quantum computing.	CO1	PO1	8
	b)	Write the truth table, circuit diagram and matrices for controlled Toffoli gate and Hadamard gate	CO1	PO1	8
	c)	Using matrix multiplication show that applying Hadmard gate twice to $ 0\rangle$ results in its original gate.	CO1	PO2	4
