

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Mechanical Engineering Stream

Course Code: 22PH2BSPME

Course: Applied Physics for Mechanical Engineering Stream

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space = 8.85×10^{-12} F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

MODULE - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive an expression for the energy density of radiation under thermal equilibrium conditions in terms of Einstein's coefficients.	CO 1	PO 1	8
		b)	Define attenuation in optical fiber with the expression for attenuation coefficient. Discuss the causes of attenuation in optical fibers with suitable diagrams.	CO 1	PO 1	8
		c)	A laser beam with power per pulse of 1 mW lasts for 10 ns. If the number of emitted photons per pulse is 3.94×10^7 , calculate the wavelength of laser.	CO 1	PO 2	4
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Define numerical aperture. Derive an expression for the numerical aperture of an optical fiber and also arrive at the condition for light propagation.	CO 1	PO 1	8
		b)	Describe the construction and working of a semiconductor diode LASER with the help of an energy level diagram.	CO 1	PO 1	8
		c)	A fiber has a diameter of 5 μm , core refractive index of 1.46 and cladding refractive index of 1.42. Calculate the number of modes that can propagate in the fiber, if the wavelength of the source is 1.5 μm .	CO 1	PO 2	4
MODULE - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	What are forced oscillations? Arrive at the expression for amplitude (A) and phase (ϕ) of the forced oscillations.	CO 1	PO 1	8
		b)	Derive an expression for the total energy of a simple harmonic oscillator and represent graphically the variation of potential, kinetic, and total energy with time.	CO 1	PO 1	8

	c)	The Q-factor of a spring loaded with 0.3 kg is 60. It vibrates with a frequency of 2 Hz. Calculate the relaxation time and damping constant.	CO 1	PO 2	4
		MODULE - III			
4	a)	What is Fermi energy? Explain the variation of Fermi factor with energy at different temperatures with a neat diagram.	CO 1	PO 1	8
	b)	What is thermal conductivity? Obtain an expression for the thermal conductivity of a conductor using classical free electron theory.	CO 1	PO 1	8
	c)	Calculate the electrical conductivity and Lorentz number of a metal with relaxation time of 10^{-14} s at 300 K. The thermal conductivity of the metal is $124 \text{ W m}^{-1} \text{ K}^{-1}$ (density of electron is $6 \times 10^{28} \text{ m}^{-3}$).	CO 1	PO 2	4
		OR			
5	a)	Mention the postulates of quantum free electron theory (QFET) and discuss any two success of QFET.	CO 1	PO 1	8
	b)	Discuss the experimental determination of the thermal conductivity of a given sample by Lee–Charlton's method with suitable diagrams.	CO 1	PO 1	8
	c)	Calculate the probability of an electron occupying an energy level of 0.06 eV above and below the Fermi level at 500 K.	CO 1	PO 2	4
		MODULE - IV			
6	a)	State Hooke's law. Explain the stress and strain relation using a neat graph.	CO 1	PO 1	8
	b)	What is the bending moment of a beam? Derive an expression for the bending moment of a rectangular beam in terms of moment of inertia with proper cross sectional diagram.	CO 1	PO 1	8
	c)	Calculate the force required to produce an extension of 1 mm in steel wire of length 2 m and diameter 1 mm. (Young's modulus for steel $Y=2 \times 10^{11} \text{ N/m}^2$).	CO 1	PO 2	4
		MODULE - V			
7	a)	State Bragg's law. Obtain the atomic radius and calculate the atomic packing factor for BCC and FCC structure.	CO 1	PO 1	8
	b)	Define interplanar spacing. Obtain an expression for interplanar spacing in-terms of Miller indices for a cubic crystal.	CO 1	PO 1	8
	c)	The interplanar spacing of the (1 0 1) plane is 2 Å for simple cubic crystal. Calculate the atomic radius.	CO 1	PO 2	4
