

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: II

Branch: Mechanical Engineering stream

Duration: 3 hrs.

Course Code: 22PH2BSPME

Max Marks: 100

Course: Applied Physics for Mechanical Stream

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space = 8.85×10^{-12} F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		Module - I	CO	PO	Marks
1	a)	Derive an expression for the energy density of radiation under thermal equilibrium conditions in terms of Einstein's coefficients.	CO 1	PO 1	8
	b)	Discuss the different types of optical fibers with suitable diagram.	CO 1	PO 1	8
	c)	Find the ratio of population of two energy levels, if the wavelength of the light emitted at 330 K is 632.8 nm	CO 1	PO 2	4
		OR			
2	a)	What is numerical aperture? Derive an expression for numerical aperture and discuss the conditions for light propagation.	CO 1	PO 1	8
	b)	Articulate the construction and working of semiconductor diode LASER along with suitable energy level diagram.	CO 1	PO 1	8
	c)	Compute the numerical aperture and acceptance angle of an optical fiber having core and cladding refractive indices of 1.50 and 1.45, respectively.	CO 1	PO 2	4
		Module -II			
3	a)	What is damped oscillation? Derive an equation for decaying amplitude in the case of under damping.	CO 1	PO 1	8
	b)	Derive an expression for the total energy of a simple harmonic oscillator and represent graphically the variation of potential, kinetic, and total energy with time.	CO 1	PO 1	8
	c)	The Q-factor of a spring loaded with 0.3 kg is 60. It vibrates with a frequency of 2 Hz. Calculate the relaxation time and damping constant.	CO 1	PO 2	4

OR					
4	a)	Define simple harmonic motion. Derive its differential equation.	CO 1	PO 1	8
	b)	What is forced vibration? Derive an expressions for amplitude of a forced vibrations.	CO 1	PO 1	8
	c)	Calculate the time period for a particle executing SHM if its acceleration at 3 cm from its mean position is 15 cm/s^2 .	CO 1	PO 2	4
Module - III					
5	a)	Define Fermi energy and Fermi factor. Discuss the variation of Fermi factor with energy and temperature suitable graph.	CO 1	PO 1	8
	b)	Discuss the experimental determination of the thermal conductivity of a given sample by Lee-Charlton's method with suitable diagrams.	CO 1	PO 1	8
	c)	Find the temperature at which there is 1% probability that a state with an energy 0.5 eV above Fermi level is occupied.	CO 1	PO 2	4
OR					
6	a)	Define thermal conductivity. Derive the classical expression for thermal conductivity of a conductor.	CO 1	PO 1	8
	b)	What are the postulates of the quantum free electron theory? Discuss any two failures of classical free electron theory which were overcome from quantum free electron theory.	CO 1	PO 1	8
	c)	The thermal conductivity of a material is 4.00 W/m/K and the electrical conductivity of the material is given by $6.32 \times 10^7 \Omega^{-1} \text{ m}^{-1}$ at a temperature of 200 K. Find the Lorentz number for the given material.	CO 1	PO 2	4
Module - IV					
7	a)	Define bending moment and derive an expression for the bending moment with neat diagram.	CO 1	PO 1	8
	b)	Define Hooke's law. Describe stress-strain diagram.	CO 1	PO 1	8
	c)	Find the work done in stretching a wire of cross sectional area 10^{-2} cm^2 and 2 m long through 0.1 mm, if Young's modulus for the material of wire is $2 \times 10^{11} \text{ Nm}^{-2}$.	CO 1	PO 2	4
OR					
8	a)	Define Poisson's ratio. Obtain the relation between Young's modules, rigidity modulus and Poisson's ratio.	CO 1	PO 1	8
	b)	What is couple force? Derive an expression for couple per unit twist of a solid cylinder.	CO 1	PO 1	8
	c)	In a stretching experiment, the extension produced in a wire for a load of 1.5 kg is $0.2 \times 10^{-2} \text{ m}$. The length of the wire is 2 m and its radius is $0.013 \times 10^{-2} \text{ m}$. Find the Young's modulus of the material of the wire.	CO 1	PO 2	4

Module - V					
9	a)	Discuss the procedure to obtain the Miller indices of crystal planes. Obtain the expression for inter-planar spacing in terms of Miller indices.	CO 1	PO 1	8
	b)	Elucidate the principle, construction and working of X-ray photo-electron spectrometer (XPS).	CO 1	PO 1	8
	c)	A beam of X-rays of wavelength 0.071 nm is diffracted by (1 1 0) plane of cubic lattice with lattice constant 0.28 nm. Find the glancing angle for the second order diffraction.	CO 1	PO 2	4
OR					
10	a)	What is atomic packing factor? Obtaining the atomic radius, and hence determine the atomic packing factor for a simple and face centered cubic system.	CO 1	PO 1	8
	b)	State Bragg's law. Discuss the construction and working of X-ray diffractometer.	CO 1	PO 1	8
	c)	The interplanar spacing of the (1 0 1) plane is 2 Å for a simple cubic crystal. Calculate the atomic radius.	CO 1	PO 2	4
