

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

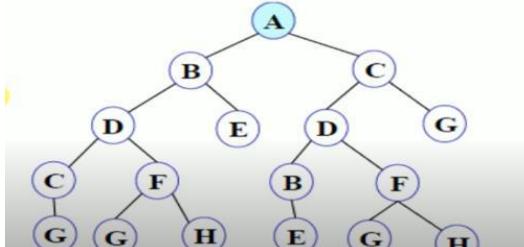
Programme: B.E.

Semester: III

Branch: Artificial Intelligence & Data Science

Duration: 3 hrs.

Course Code: 23AI3PCIAI


Max Marks: 100

Course: Introduction to Artificial Intelligence

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
1	a)	Define Artificial Intelligence. Explain the Key Factors of Artificial Intelligence.		<i>CO1</i>	<i>PO1</i>	10
	b)	Define (a) Intelligence (b) Agent		<i>CO1</i>	<i>PO1</i>	05
	c)	Describe the State of Art of AI.		<i>CO1</i>	<i>PO1</i>	05
OR						
2	a)	Explain the concept of Rationality.		<i>CO1</i>	<i>PO1</i>	06
	b)	Apply PEAS Description for Self-Driving Car in AI		<i>CO2</i>	<i>PO2</i>	04
	c)	What are the general steps in problem solving? Explain problem formulation for the 8 Queen Problem with State space Diagram.		<i>CO1</i>	<i>PO1</i>	10
			UNIT - II			
3	a)	Find the shortest path between S to G in the following graph using A* search algorithm		<i>CO2</i>	<i>PO1</i>	10
	b)					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		with Start node as A and Goal node as G.			
	c)	Explain Heuristic Function in Detail.	CO1	PO1	05
		OR			
4	a)	Give Hill-Climbing algorithm and explain different variants of Hill climbing.	CO1	PO1	06
	b)	Explain the drawbacks of Hill climbing.	CO1	PO1	04
	c)	Give Genetic algorithm. Explain and show how genetic algorithm is illustrated for digit strings representing 8-queens states.	CO2	PO2	10
		UNIT - III			
5	a)	Explain in detail about Constraint satisfaction Problem.	CO1	PO1	05
	b)	Draw constraint graph by considering the map of Australia which is showing each of its states and territories. Each region is colored in such a way that no neighboring regions have the same color.	CO2	PO2	07
	c)				
		OR			
6	a)	Show and explain the stages in calculating the optimal decision by applying Alpha beta pruning to the following two-ply game tree.	CO2	PO2	10

	b)	Explain how Kriegspiel can be viewed as a game of incomplete information and the implications of this for game theory.	CO1	PO1																						
UNIT - IV																										
7	a)	Discuss in detail about knowledge-based Agents.	CO3	PO3																						
	b)	Illustrate the syntax of First-Order Logic (FOL) and explain its components with examples.	CO3	PO3																						
	c)	Demonstrate the concepts of an assertion and a corresponding query by providing an example within the context of a "Wumpus World" domain.	CO2	PO2																						
OR																										
8	a)	Explain the concept of Propositionalizing in the context of First-Order Logic (FOL). Apply propositionalizing to transform the following FOL statement into a propositional logic expression: " $\forall x (Person(x) \rightarrow Loves(x, IceCream))$ "	CO3	PO3																						
	b)	Explain the concept of Backward Chaining in the context of rule-based reasoning for the problem "The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all its missiles were sold to it by Colonel West, who is American". Apply Backward Chaining to determine if the conclusion "Colonel West is a criminal"	CO3	PO3																						
UNIT - V																										
9	a)	Consider the full joint distribution table shown, discuss about marginal probability, marginalization & conditioning and compute the probability of a cavity and the probability that there is no cavity given the evidence of toothache.	CO3	PO3																						
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th colspan="2"></th> <th colspan="2"><i>toothache</i></th> <th colspan="2">\neg<i>toothache</i></th> </tr> <tr> <th colspan="2"></th> <th><i>catch</i></th> <th>\neg<i>catch</i></th> <th><i>catch</i></th> <th>\neg<i>catch</i></th> </tr> </thead> <tbody> <tr> <th><i>cavity</i></th> <td>0.108</td> <td>0.012</td> <td>0.072</td> <td>0.008</td> </tr> <tr> <th>\neg<i>cavity</i></th> <td>0.016</td> <td>0.064</td> <td>0.144</td> <td>0.576</td> </tr> </tbody> </table>			<i>toothache</i>		\neg <i>toothache</i>				<i>catch</i>	\neg <i>catch</i>	<i>catch</i>	\neg <i>catch</i>	<i>cavity</i>	0.108	0.012	0.072	0.008	\neg <i>cavity</i>	0.016	0.064	0.144	0.576		
		<i>toothache</i>		\neg <i>toothache</i>																						
		<i>catch</i>	\neg <i>catch</i>	<i>catch</i>	\neg <i>catch</i>																					
<i>cavity</i>	0.108	0.012	0.072	0.008																						
\neg <i>cavity</i>	0.016	0.064	0.144	0.576																						
	b)	Explain about summarizing uncertainty by considering an example of diagnosing a dental patient's toothache.	CO1	PO1																						
OR																										
10	a)	Explain Bayes' Rule and its application in medical diagnosis. How can it help update the probability of a disease given a positive test result?	CO3	PO3																						

	b)	<p>Solve probabilistic reasoning problem in the following Wumpus world. Suppose the agent starts in the bottom-left corner of a 4x4 grid (position (1,1)) and can sense both a breeze (indicating a nearby pit) and a stench (indicating the presence of the Wumpus).</p> <p>i. How should the agent use its sensors (stench and breeze) to deduce the locations of the Wumpus and pits in the Wumpus World?</p> <p>ii. Given the following grid, with the agent starting at (1,1), where could the agent safely move to find the gold while avoiding the Wumpus and pits?</p>	CO3	PO3	10
--	----	--	-----	-----	----
