

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 23AM3ESCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define computer program. Describe the essential components forming the operational core of a computer system.	CO1	PO1	05
		b)	Illustrate the different types of registers in CPU and also provide their purpose.	CO1	PO1	07
		c)	Registers R1 and R2 hold decimal values 1200 and 4600, respectively. Analyze the addressing modes and compute the effective address of the source operand for each of the following instructions: i. Load 20(R1),RS ii. Move #3000,RS iii. Store RS,30(R1,R2) iv. Add-(R2),R5 v. Subtract (R1) +, R5	CO2	PO2	08
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Elucidate the intricate stages involved in the execution cycle of instructions within the context of a computer system.	CO1	PO2	07
		b)	How do basic instruction types operate within computer programming paradigms? Evaluate: $(A+B) * (C+D)$ by considering 3 basic instruction addresses.	CO1	PO3	09
		c)	Explain Register Transfer Language notations used to specify the sequence of micro-operations.	CO1	PO1	04
UNIT - II						
3	a)	Illustrate the shift-add-multiplier algorithm through a well-structured flowchart. Apply this method to compute the product of 9 multiplied by 12.	CO1	PO3	10	

	b)	Write a flowchart that describes the process of performing integer addition and subtraction using signed magnitude representation. Explain the steps involved.	CO1	PO2	06
	c)	Perform carry save multiplier for: (1011 * 1101).	CO1	PO3	04
		OR			
4	a)	i. Apply a Booth recording technique to calculate the product of +13 and -6. ii. Perform carry-save addition (CSA) for the binary numbers 101101 (multiplicand) and 111111 (multiplier).	CO1	PO3	10
	b)	Outline the sequential steps comprising the division-restoring algorithm. Apply the restoring division algorithm to compute 11 divided by 3.	CO1	PO3	10
		UNIT - III			
5	a)	Distinguish between hardware control unit and micro programmed control unit.	CO2	PO2	05
	b)	Describe sequence counter method with an example to illustrate its application.	CO2	PO2	07
	c)	Illustrate the mechanism of the Hardwired control unit with a neat labelled diagram.	CO2	PO3	08
		OR			
6	a)	Elaborate on the fundamental components inherent to a microprogrammed control unit. Provide an illustrative example to demonstrate their functionality within control unit architecture.	CO2	PO2	07
	b)	Describe different types of semiconductor memory technologies.	CO1	PO1	06
	c)	Examine the design factors and architecture of a hypothetical Central Processing Unit. Also explain how Control Unit generates control signals for a simple hypothetical instruction using its control memory.	CO2	PO2	07
		UNIT - IV			
7	a)	Analyze the mechanism for inputting a block of data using interrupt-driven I/O. Provide a detailed explanation with an appropriate diagram to illustrate the process effectively.	CO2	PO2	07
	b)	Illustrate the process state transitions with a neat diagram.	CO6	PO2	06
	c)	Describe the concept of Direct Memory Access (DMA) with diagram to illustrate its operation.	CO3	PO3	07
		OR			
8	a)	Detail the concept of program-controlled input/output (I/O) within computer systems, elucidating its workings and significance. Provide an example to demonstrate how program-controlled I/O is utilized effectively.	CO2	PO2	07

		b)	Elucidate software interrupt and exceptions with an example.	CO2	PO1	06
		c)	Explain any two methods of handling interrupts from multiple devices.	CO1	PO1	07
			UNIT - V			
	9	a)	Explore the concept of pipelining with various stages of instruction execution and also demonstrate control hazard.	CO3	PO2	06
		b)	A family is preparing for a weekend trip by completing multiple loads of laundry, including washing, drying, folding, and organizing clothes. Analyze how these tasks can be optimized using the traditional pipeline concept, focusing on how each stage can be connected and streamlined to reduce delays and improve overall efficiency.	CO3	PO3	10
		c)	Illustrate the data hazard with an example, and explain how it affects the execution of instructions in a computer system.	CO3	PO2	04
			OR			
	10	a)	Elucidate the principles and mechanisms underlying Direct Memory Mapping and Associative Memory Mapping.	CO3	PO1	07
		b)	Determine the number of page faults incurred using FIFO and LRU page replacement algorithms with a memory capacity of 3 frames, given the page reference sequence: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1	CO3	PO3	08
		c)	Calculate the average access time experienced by a processor, if a cache hit rate is 0.88, miss penalty is 0.015 milliseconds and cache access time is 10 milliseconds.	CO3	PO3	05
