

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S.College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 23AM3ESCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain the basic functional blocks of a computer with neat diagram.	CO1	PO1	05
		b)	Illustrate the instruction execution cycle in detail by considering an instruction: ADD A,B	CO1	PO2	07
		c)	Register R1 and R2 of computer contain the decimal value 1200 and 4600 respectively. Describe the corresponding addressing modes and compute the effective address of the source operand in each of the following instructions: i. Load 20(R1),RS ii. Move #3000,RS iii. Store RS,30(R1,R2) iv. Add-(R2),R5 v. Subtract (R1)+, R5	CO2	PO2	08
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Explain Register Transfer Language notations used to specify the sequence of micro-operations.	CO1	PO1	05
		b)	Illustrate the functions of different types of registers in CPU.	CO1	PO2	07
		c)	Consider the instruction: (A+B) * (C+D) and evaluate it using the following instruction formats: i. three address ii. two address iii. one address iv. zero address	CO2	PO2	08
UNIT - II						
3	a)	Design an 'n' bit carry propagation adder circuit to add 'K'-'n' bit numbers.	CO2	PO2	06	

	b)	Perform $((-4) + (-2))$ and $((-6) - (-1))$ arithmetic operations on signed integers with 4-bit binary representation using 2's complement. And also state whether overflow occurs or not in each case.	CO2	PO2	06
	c)	Write the steps for non-restoring division algorithm. Apply the same on dividend – 8 and divisor – 2.	CO2	PO2	08
		OR			
4	a)	Design a 4-bit carry look ahead adder logic circuit by considering carry and sum.	CO2	PO2	06
	b)	Describe the 32-bit floating point representation in IEEE standard format using: i. Single precision ii. Double precision	CO2	PO2	06
	c)	i. Write Booth multiplier recoding table. Apply the same to multiply +13 and -6. ii. Perform carry save addition on 101101(Multiplicand) and 111111(Multiplier).	CO2	PO2	08
		UNIT - III			
5	a)	Explain the hardware control unit with neat diagram.	CO1	PO1	06
	b)	Illustrate the simple hypothetical CPU with an example.	CO2	PO2	06
	c)	Describe the mechanism on micro programmed control unit which is used to implement control unit.	CO2	PO3	08
		OR			
6	a)	Describe different types of semiconductor memory technologies.	CO1	PO1	06
	b)	Distinguish between hardware control unit and micro programmed control unit.	CO2	PO2	06
	c)	Analyze the sequence counter method in computer programming and also provide its applications with suitable examples.	CO2	PO3	08
		UNIT - IV			
7	a)	Explain the Direct Memory Access (DMA) with neat diagram. Also elaborate on registers in DMA controller.	CO1	PO1	06
	b)	Distinguish between software interrupts and exceptions with suitable examples.	CO2	PO3	06
	c)	Analyze the mechanism for input a block of data using the following techniques with suitable diagram: i. Programmed I/O ii. Interrupt –driven I/O	CO2	PO3	08
		OR			
8	a)	Explain any two method of handling interrupts from multiple devices.	CO1	PO1	06

		b)	Distinguish between privileged and non- privileged instructions in computer architecture.	CO2	PO3	06																		
		c)	Consider Alice is designing a high-performance networking device for a data center. Demonstrate how DMA (Direct Memory Access) can efficiently transfer large volumes of data between the network interface and system memory, considering factors such as minimizing CPU involvement and optimizing throughput.	CO2	PO3	08																		
			UNIT - V																					
	9	a)	For a given page reference sequence: 7,0,1,2,0,3,0, 4,2,3,0,3,2,1,2,0,1,7,0,1. Calculate the number of page faults incurred using FIFO and LRU page replacement algorithms with a memory capacity of 3 frames.	CO2	PO1	05																		
		b)	Illustrate occurrence of data hazard and instruction hazard in pipelining.	CO2	PO1	05																		
		c)	Consider the 5 stages of the processor have the following latencies: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th></th> <th>Fetch</th> <th>Decode</th> <th>Execute</th> <th>Memory</th> <th>Writeback</th> </tr> <tr> <td>1</td> <td>300ps</td> <td>400ps</td> <td>350ps</td> <td>550ps</td> <td>100ps</td> </tr> <tr> <td>2</td> <td>200ps</td> <td>150ps</td> <td>100ps</td> <td>190ps</td> <td>140ps</td> </tr> </table> <p>Assume that when pipelining, each pipeline stage costs 20ps extra for the registers between pipeline stages. Now compute the following:</p> <ol style="list-style-type: none"> For Non-pipelined processor, compute the cycle time, latency of an instruction and the throughput. For pipelined processor, compute the cycle time, latency of an instruction and the throughput. Analyze the efficiency between (i) and (ii) with suitable justification. 		Fetch	Decode	Execute	Memory	Writeback	1	300ps	400ps	350ps	550ps	100ps	2	200ps	150ps	100ps	190ps	140ps	CO2	PO3	10
	Fetch	Decode	Execute	Memory	Writeback																			
1	300ps	400ps	350ps	550ps	100ps																			
2	200ps	150ps	100ps	190ps	140ps																			
			OR																					
	10	a)	Calculate the average access time experienced by a processor, if a cache hit rate is 0.88, miss penalty is 0.015 milliseconds and cache access time is 10 milliseconds.	CO2	PO1	05																		
		b)	Illustrate memory interleaving in memory organization with neat diagram.	CO2	PO1	05																		
		c)	A block-set-associate cache consists of a total of 64 blocks divided into 4-block sets. The main memory contains 4096 blocks, each consisting of 128 words. With this answer the following: <ol style="list-style-type: none"> Mechanism of set-associative mapping with suitable diagram. Calculate the number of bits in a main memory address. Calculate the number of bits in each of the TAG, SET and WORD fields. 	CO2	PO3	10																		
