

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: Machine Learning (AI & ML)

Duration: 3 hrs.

Course Code: 23AM3ESCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate computer architecture in detail with a diagram.	CO1	PO1	07
	b)	Consider a five stage CPU execution cycle and identify under what stage the following scenarios/instructions hold good with appropriate justification. i. The control unit interprets the opcode and identifies the required operands and operation. ii. ADD AX, [1234h]. iii. MOV [5678h], AX. iv. Add the value from memory to the value in AX.	CO2	PO2	08
	c)	Justify the statement “The Instruction Set Architecture acts as a bridge between software and hardware”.	CO1	PO2	05
OR					
2	a)	Illustrate Traditional Von Neuman Architecture with a diagram and mention the disadvantages of the architecture.	CO1	PO2	07
	b)	Analyze the following instruction and determine valid addressing mode and justify your answer. i. MOV AL, 5. ii. MOV AX, BX. iii. MOV AX, [BX]. v. MOV AX, [BX + SI + 10].	CO2	PO2	08
	c)	Differentiate RISC and CISC Instruction set Architecture.	CO1	PO1	05
UNIT - II					
3	a)	Describe Fixed point representation by hardware with an example.	CO1	PO2	04
	b)	Apply shift and add method to multiply 9 and 12 using with a 4-bit representation.	CO2	PO1	06
	c)	Write the sequential steps comprising the division-restoring algorithm. Apply the restoring division algorithm to compute 11 divided by 3.	CO2	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	Illustrate 4-bit carry look-ahead adder with a diagram.	CO1	PO1	06
	b)	Apply Booth's algorithm with a 4-bit representation to multiply -5 and -7.	CO2	PO2	06
	c)	Apply Non-Restoring Division for an unsigned integer with a dividend of 11 and a divisor of 3.	CO2	PO2	08
UNIT - III					
5	a)	Compare and contrast hardwired and micro-programmed designs with neat circuit diagrams.	CO1	PO1	10
	b)	Illustrate hypothetical computer design with suitable diagram.	CO1	PO2	10
OR					
6	a)	Describe state table method and delay element method used in hardwired control design.	CO1	PO1	10
	b)	Illustrate RAM, ROM and Flash memory in semi-conductor memory technologies.	CO1	PO1	10
UNIT - IV					
7	a)	Describe Input-output module structure and program-controlled input/output (I/O) module structure with a neat diagram.	CO1	PO1	08
	b)	Analyze the following use cases and justify which appropriate I/O transfer technique is suitable. <ol style="list-style-type: none"> Devices with infrequent or irregular data transfer, like keyboards or mice. Simple systems where hardware or timing constraints make polling acceptable Systems where hardware or timing constraints make polling acceptable. 	CO3	PO2	06
	c)	Illustrate the process state transitions with a neat diagram.	CO3	PO2	06
OR					
8	a)	Differentiate software and hardware interrupt.	CO1		05
	b)	Describe DMA in detail with a neat diagram and mention its applications.	CO1	PO2	08
	c)	Explain any two methods of handling interrupts from multiple devices.	CO1	PO1	07
UNIT - V					
9	a)	Signify the importance of pipelining in the modern CPU world. Demonstrate 5 stage pipeline process for four instructions that needs to be executed parallelly.	CO3	PO2	07
	b)	What might cause a data hazard in pipelining? Justify. Provide any two solutions for the following instruction set to resolve data hazard (Assume 5 stage pipeline process). <p>I1: ADD R1, R2, R3 I2: SUB R4, R1, R5</p>	CO3	PO1	06

		c)	Define Cache hit and miss. Using FIFO replacement policy calculate page faults and hits for the string 1,3,0,3,5,6 with 3-page frames.	<i>CO3</i>	<i>PO1</i>	07
			OR			
10		a)	Illustrate the role of cache in memory management with a neat diagram.	<i>CO1</i>	<i>PO1</i>	05
		b)	Illustrate data and control pipeline hazards with an example. Provide solutions for the same.	<i>CO1</i>	<i>PO2</i>	07
		c)	Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2 and the number of frames in the memory is 3. Find out the number of page faults using FIFO and LRU.	<i>CO3</i>	<i>PO1</i>	08
