

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 23AM3ESCOA

Max Marks: 100

Course: Computer Organization and Architecture

Instructions: 1. Answer any FIVE questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate the different phases involved in the Instruction execution cycle	<i>CO 1</i>	<i>PO 1</i>	07
	b)	An integer is stored in the memory. A pointer to this integer is at address 200. Apply memory indirect addressing to increment the number to next address.	<i>CO 2</i>	<i>PO 2</i>	07
	c)	Describe the internal components of a computer with its primary functionalities with a neat diagram.	<i>CO 1</i>	<i>PO 1</i>	06
UNIT - II					
2	a)	Compare Ripple carry adder with Propagation delay.	<i>CO 1</i>	<i>PO 1</i>	06
	b)	Convert the following decimal number 7.5 to be stored in a 16-bit register with 4-bit after the binary point using 2's complement.	<i>CO 2</i>	<i>PO 2</i>	06
	c)	Consider a scenario where you are working with a computer system that uses the IEEE 754 standard for floating-point representation. Encode the decimal number 1259.125_{10} in single-precision and double-precision.	<i>CO 2</i>	<i>PO 3</i>	08
OR					
3	a)	Differentiate between restoring and non-restoring division algorithms.	<i>CO 1</i>	<i>PO 1</i>	04
	b)	Describe the working procedure of Booth's algorithm with a neat flow chart and Apply Booth's algorithm to calculate the product of -5 and -7.	<i>CO 2</i>	<i>PO 3</i>	08
	c)	Illustrate the shift-and-add multiplication algorithm by performing the multiplication of the binary numbers 1001 and 1100.	<i>CO 2</i>	<i>PO 3</i>	08
UNIT - III					
4	a)	Describe the factors influencing the speed and density of semiconductor memory devices.	<i>CO 1</i>	<i>PO 1</i>	06
	b)	How microprogramming contributes to the overall performance of a CPU? Explain.	<i>CO 2</i>	<i>PO 1</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing identification, and appeal to evaluator will be treated as malpractice.

	c)	Illustrate the mechanism of the hardwired control unit with a neat labeled diagram to ensure the team comprehends the operation.	CO 1	PO 1	08
		UNIT – IV			
5	a)	Illustrate handling of an interrupt in a computer system during I/O operations.	CO 1	PO 1	06
	b)	Differentiate between the address bus, data bus, and control bus.	CO 1	PO 1	06
	c)	A high-performance graphics card is installed in a computer system. Elucidate how DMA can efficiently transfer image data from the system's main memory to the graphics card's memory for rendering.	CO 2	PO 2	08
		UNIT - V			
6	a)	Illustrate the concept of structural hazards in CPU pipelining and apply the strategies to mitigate their occurrence.	CO 1	PO 1	06
	b)	Describe the principle of spatial and temporal locality and justify how it influences cache behavior.	CO 1	PO 1	06
	c)	Consider a direct mapped cache of size 16 KB with a block size of 256 bytes. The size of the main memory is 128 KB. Find, 1. The number of bits in the tag 2. Tag directory size.	CO 2	PO 3	08
		OR			
7	a)	Differentiate between Direct-mapping, Associative mapping & Set-associative mapping.	CO 1	PO 1	06
	b)	Describe a cache hit Ratio with an example and illustrate how to calculate a cache hit ratio.	CO 2	PO 1	06
	c)	Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2. The number of frames in the memory is 3. Find out the number of page faults with respect to: 1. FIFO Page Replacement Algorithm 2. LRU Page Replacement Algorithm	CO 2	PO 2	08
