

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 23AM3ESCOA

Course: Computer Organization and Architecture

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			1	a)	Outline the significance of registers present in computer.			
				b)	List and explain different instruction formats.	CO1	PO1	6
				c)	Provide the RTL notation for memory operations, detailing the sequence of micro-operations involved and the transfer of data between the specified components of the computer system.	CO2	PO2	8
			UNIT - II					
			2	a)	Demonstrate how does the structure of a Carry Look Ahead Adder with its design to contribute its efficiency in terms of reducing the propagation delay and enabling parallelism compared to ripple carry adders.	CO2	PO2	10
				b)	Imagine Bob is working with a computer system that uses IEEE 754 standard 32-bit floating point representation. He needs to convert the decimal numbers 0.09375 and 1.025 into its corresponding 32-bit floating-point single precision IEEE 754 format. Outline the step-by-step process involved in this conversion, including how the sign bit, exponent, and mantissa are determined.	CO2	PO3	10
			OR					
			3	a)	Illustrate the detailed process of employing the restoring division algorithm to compute the division of 9 by 3.	CO2	PO2	10
				b)	Apply Booth's algorithm to calculate the product of: 1) - 07 (multiplicand) and 03 (multiplier) 2) 0111 * 1011	CO2	PO3	10
			UNIT - III					
			4	a)	Elucidate two distinct types of semiconductor memory, detailing their unique characteristics, and advantages compared to alternative memory technologies.	CO3	PO2	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Differentiate between Hardwired and micro programmable control unit	CO3	PO2	5
	c)	Illustrate how microprogrammed control units play a crucial role in achieving computational tasks efficiently.	CO2	PO2	8
UNIT - IV					
5	a)	Elucidate software interrupt and exceptions with example	CO2	PO1	6
	b)	Illustrate the structure of a system bus including its components and application within a computer system.	CO1	PO1	6
	c)	Demonstrate how DMA (Direct Memory Access) can efficiently transfer large volumes of data between the network interface and system memory, considering factors such as minimizing CPU involvement and optimizing throughput.	CO2	PO2	8
UNIT - V					
6	a)	Differentiate between cache hits and cache misses, and explain how data flows between the cache and main memory	CO1	PO1	6
	b)	Describe the stages involved in a typical instruction pipeline and explain the function of each stage.	CO2	PO2	6
	c)	Apply FIFO and LRU Page Replacement algorithms on the following page reference string 7,1,0,2,0,3,0,4,2,1,0 for a memory with 3 frames and calculate the total occurrences of page faults and page hits.	CO2	PO3	8
OR					
7	a)	Explain how structural hazards arise in pipelined architectures and provide examples of situations where they can occur.	CO2	PO2	6
	b)	Calculate the average access time experienced by a processor, if a cache hit rate is 0.88, miss penalty is 0.015 milliseconds and cache access time is 10 milliseconds	CO2	PO3	6
	c)	Elucidate the principles and mechanisms underlying Direct Memory Mapping and Associative Memory Mapping.	CO2	PO1	8
