

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 20AM3PCDST

Max Marks: 100

Course: Data Structures

Date: 14.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may suitably assumed.

UNIT - I

1. a) Summarize dynamic memory allocation functions with syntax and examples. **6**

b) Write the C functions for the following : **7**

- i. Concatenation of two singly linked lists.
- ii. Counting number of nodes (length) singly linked list.

c) Write the C functions for the following **7**

- i. Deletion of a specified node in singly linked list.
- ii. Deletion of a node at end of singly linked list.

UNIT - II

2. a) Explain the following operations using appropriate logical code snippets **7**

- i. Inserting a new node at the end of circular singly linked list.
- ii. Deletion of first node in circular singly linked list.

b) Implement C functions to demonstrate the working of the following operations. **7**

- i. Deletion of specified node in doubly linked list.
- ii. Counting the number of nodes in doubly linked list.

c) Apply infix to postfix conversion algorithm and convert the following given infix expressions to their equivalent postfix. **6**

- i. $(a + b) * d + e / (f + a * d) + c$
- ii. $A * (B + C) * D$

OR

3. a) Using pictorial representations and equivalent functions, explain the following in detail **7**

- i. Inserting a node at front of circular doubly linked list.
- ii. Deleting a node at the end of circular doubly linked list.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Write appropriate C functions to demonstrate the following operations: 7

- Search a given KEY in doubly linked list.
- Concatenation of two doubly linked lists.

c) Make use of postfix evaluation algorithm and evaluate the given postfix expressions. 6

- $a \ b \ / \ c \ - \ d \ e \ * \ + \ a \ c \ * \ +$ where $a=6, b=3, c=1, d=2, e=4$
- $6 \ 2 \ / \ 3 \ - \ 4 \ 2 \ * \ +$

UNIT - III

4. a) Write recursive functions for the following. 7

- Tower of Hanoi
- Ackerman's function.

b) Write the C functions to show the working of insert, delete and display operations of circular queue. 7

c) Develop the following algorithms for one way list representation of priority queues 6

- Insertion
- Deletion

UNIT - IV

5. a) For the given list of elements : 100, 85, 45, 55, 110, 20, 70, 65 construct the equivalent Binary Search tree in the form of linked list representation. 7

b) Using the given preorder and inorder sequences, construct the corresponding binary tree. 7

Preorder : A B C D E F G H I
 Inorder : B C A E D G H F I

c) Construct the threaded binary tree for the given list of elements. 6

10, 20, 30, 40, 50

UNIT - V

6. a) Explain the operations of the following with suitable examples. 10

- AVL trees
- Red Black trees

b) Construct AVL tree for given elements. 10

8, 18, 28, 23, 25, 5, 2

OR

7. a) Explain the working of splay tree in detail 10

b) Construct a Red Black Tree for the given elements 10

9, 20, 7, 18, 20, 21, 38, 51, 85
