

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 22AM3PCDST

Max Marks: 100

Course: Data Structures

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate the classification of data structures with examples.	CO1	PO1	05
	b)	Write a program and explain various dynamic memory allocation functions.	CO1	PO1	08
	c)	Write a C functions to demonstrate the following operations on a Singly Linked List (SLL) with header node: i. Insert an item at the rear end ii. Display the items in the SLL.	CO1	PO1	07
OR					
2	a)	Differentiate static memory allocation and dynamic memory allocation.	CO1	PO1	05
	b)	Write a C program to implement a Singly Linked List (SLL) with a header node to perform the following basic operations: i. Insert at the front end ii. Search for a key in the list iii. Display the contents of the list	CO1	PO1	10
	c)	Explain the applications of Singly Linked List (SLL)	CO1	PO1	05
UNIT - II					
3	a)	Explain the different operations that can be performed on stack using C functions.	CO1	PO1	06
	b)	Convert the following infix expressions to postfix expressions using stack: i. $A \$ B * C - D + E F (G + H)$ ii. $(A + B) + C / D * E$	CO2	PO2	06
	c)	Write C functions to demonstrate the following operations on a Circular Doubly Linked List (CDLL). i. Insert an item at the rear end ii. Delete an item at the front end	CO1	PO1	08
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

4	a)	Explain the advantages of linked list over arrays.	CO1	PO1	04
	b)	Illustrate the process of evaluation of the given postfix expression: 4 5 3 * + 7 - using a stack trace.	CO1	PO2	06
	c)	Write C function to demonstrate the following operations on a Doubly Linked List (DLL). i. Insert an item at the front end ii. Delete an item at rear end. iii. Display.	CO1	PO1	10
UNIT - III					
5	a)	Explain any two types of queues with suitable application.	CO2	PO1	04
	b)	Define recursion and write recursive function to generate Fibonacci series up to 'n'.	CO2	PO1	06
	c)	Demonstrate the working of circular queue of integers using array to perform the following operations: i. Insert ii. Delete iii. Display	CO2	PO1	10
OR					
6	a)	Write a program to implement a priority queue where elements with lower values have higher priority.	CO2	PO1	10
	b)	Describe how a deque works, using a music player as an example.	CO2	PO1	05
	c)	Write a recursive function to solve Tower of an Hanoi problem.	CO2	PO1	05
UNIT - IV					
7	a)	With a neat diagram explain Threaded binary tree.	CO3	PO1	05
	b)	Construct a Binary Search Tree (BST) for the sequence: 24, 60, 37, 8, 3, 91, 58, 20, 5, 62, 15, 50 and perform inorder and preorder traversals on it.	CO3	PO3	10
	c)	Write a C function to find the height of BST.	CO3	PO1	05
OR					
8	a)	Differentiate the following types of Binary Tree: i. Complete Binary Tree ii. Perfect Binary Tree iii. Balanced Binary Tree	CO3	PO1	06
	b)	Given the postorder and inorder traversals of a binary tree, construct and return the binary tree. Post-order = [4, 7, 5, 2, 8, 6, 3, 1] In-order = [4, 2, 7, 5, 1, 8, 6, 3]	CO3	PO3	10
	c)	Explain the applications of Binary Search Tree (BST)	CO3	PO1	04
UNIT - V					
9	a)	List the properties of Red-Black tree. Explain the process of insertion of items in Red-Black tree.	CO3	PO1	10
	b)	Construct an AVL tree by inserting the elements: 63, 9, 19, 27, 18, 108, 99, 81 in the given order.	CO3	PO3	10
OR					

	10	a)	Illustrate any five splaying in splay tree with an example for each.	CO3	PO1	10
		c)	Construct a Red-Black tree by inserting the elements: 10, 20, 7, 17, 19, 27, 42, 82 in the same order by representing the process pictorially at every step.	CO3	PO3	10

REAPPEAR EXAMS 2024-25