

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence & Machine Learning

Duration: 3 hrs.

Course Code: 22AM3PCDST

Max Marks: 100

Course: Data Structures

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			1	a)	Write user defined functions to demonstrate the following operations on a Singly Linked List (SLL) with header node.			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.				i.	Insert an item at the front end			
				ii.	Delete an item from the front end			
				b)	Elaborate the hierarchy of basic classification of data structures with respect to memory allocation and usage.			
				c)	How does static memory allocation differ from dynamic memory allocation? Explain.			
				OR				
			2	a)	List and explain the applications of Singly Linked List (SLL)			
				b)	Write a program to perform the following operations on Singly Linked List (SLL).			
				i.	Insert rear			
				ii.	Delete rear			
				iii.	Display the elements of SLL.			
UNIT - II								
			3	a)	Illustrate the process of evaluation of the given postfix expression: 2 3 1 * + 9 - using a stack trace.			
				b)	Write user defined functions to demonstrate the following operations on a Circular Doubly Linked List (CDLL).			
				i.	Insert an item at the front end			
				ii.	Delete an item from the rear end			
				c)	Is it possible to confirm the correctness of parenthesis matching in a given string using the concept of arrays? Pictorially illustrate the sequence for the string “(4{3+1}”			
				OR				

	4	a)	Illustrate the process of conversion of given infix expression: $a*c+(b/d)^e$ to postfix representation using a stack trace.	CO1	PO2	08
		b)	Write user defined functions to demonstrate the following operations on a Doubly Linked List (DLL). <ol style="list-style-type: none"> Concatenation of 2 DLL Display 	CO1	PO1	08
		c)	Explain any 2 basic stack operations.	CO1	PO1	04
UNIT - III						
5	a)		Write a recursive code to determine <ol style="list-style-type: none"> Factorial of a given number n^{th} Fibonacci number 	CO2	PO1	08
	b)		Perform the following operations: insert(3), insert(4), insert(5), delete, insert(6), insert(7), insert(8), insert(9) on the circular queue with capacity 5 and determine the final items on the queue. Represent each and every step pictorially and explain the process.	CO2	PO2	08
	c)		What are the advantages of using a dequeue over a standard queue or stack?	CO2	PO1	04
OR						
6	a)		List and explain applications of queues used to solve real time problems.	CO2	PO1	04
	b)		Write a program to implement a priority queue where elements with higher values have higher priority.	CO2	PO1	08
	c)		Write a code snippet to implement following deque operations: <ol style="list-style-type: none"> To insert elements at the rear end To delete elements between the nodes 	CO2	PO1	08
UNIT - IV						
7	a)		Construct a Binary Search Tree for the sequence: 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24 and perform inorder & preorder traversals on it.	CO3	PO3	10
	b)		Illustrate the concepts of left and right threaded Binary Tree.	CO3	PO3	05
	c)		Justify the statement “The Maximum number of nodes in a binary tree of height ‘h’ is $2^h - 1$ ”	CO3	PO3	05
OR						
8	a)		Differentiate the following types of binary trees: <ol style="list-style-type: none"> Full Binary Tree Degenerate Binary Tree Skewed Binary Trees 	CO3	PO3	06
	b)		Perform In-order, Pre-order, and Post-order traversals for the given tree below, and clearly write out the resulting sequences.	CO3	PO3	06
			<pre> graph TD A((A)) --> B((B)) A --> C((C)) B --> D((D)) B --> E((E)) D --> H((H)) D --> I((I)) E --> J((J)) E --> L((L)) C --> F((F)) F --> G((G)) J --> L </pre>			

	c)	Given in-order and pre-order traversals of a Binary Tree, construct the Binary Tree and return its root: In-order = [3, 1, 4, 0, 5, 2] Pre-order = [0, 1, 3, 4, 2, 5]	CO3	PO3	08
		UNIT - V			
9	a)	Construct a Red-Black tree by inserting the elements: 8, 18, 5, 15, 17, 25, 40, 80 in the same order by representing the process pictorially at every step.	CO3	PO3	10
	b)	Elaborate on the rules to be followed during construction of a AVL tree.	CO3	PO3	06
	c)	Differentiate between Zig and Zig-Zig operations of a splay tree.	CO3	PO3	04
		OR			
10	a)	Construct a AVL tree by inserting the elements: 21, 26, 30, 9, 4, 14, 28, 18, 15, 10 in the given order.	CO3	PO3	10
	b)	Elaborate on the rules to be followed during construction of a Red Black tree.	CO3	PO3	06
	c)	Write any 4 real time applications of splay trees.	CO3	PO3	04
