

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: 3

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 23AM3PCDST

Max Marks: 100

Course: DATA STRUCTURES

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What is memory allocation? With suitable example explain static memory allocation technique with its drawback.	CO1	PO1	07
	b)	Explain the difference between linear and non-linear data structures with suitable examples.	CO1	PO1	06
	c)	Write a Python code to add a node between the existing nodes in the singly linked list (SLL) and display the list.	CO1	PO1	07
OR					
2	a)	Discuss various types of dynamic memory allocation functions with suitable examples for each.	CO1	PO1	07
	b)	With a code snippet explain the process of adding a node at the end of a singly linked list and display the contents of SLL	CO1	PO1	07
	c)	Define data structures. Differentiate primitive and non-primitive data structure with suitable example.	CO1	PO1	06
UNIT - II					
3	a)	Deduce the contents of empty stack after the execution of the following operations in sequence: Push(6), Push(8), Push(-1), Pop(), Push(7), Pop(), Pop()	CO2	PO2	04
	b)	Given the infix expression $A + B * C / D - F + A ^ E$ convert it to postfix expression. Provide a clear explanation of each step involved in the conversion process.	CO3	PO2	08
	c)	Elaborate the following operations performed on Doubly Linked List (DLL) with a code snippet: i. Adding a node at the beginning of the linked list. ii. Deleting the node at the end of linked list.	CO2	PO2	08
OR					
4	a)	Evaluate the postfix expression:	CO3	PO2	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<table border="1"> <tr><td>6</td><td>2</td><td>3</td><td>+</td><td>-</td><td>3</td><td>8</td><td>2</td><td>/</td><td>+</td><td>*</td><td>2</td><td>&</td><td>3</td><td>+</td></tr> </table>	6	2	3	+	-	3	8	2	/	+	*	2	&	3	+			
6	2	3	+	-	3	8	2	/	+	*	2	&	3	+						
		Show the contents of stack at each step.																		
	b)	Write Python function to perform insertion of a node at front and deletion of a node from the rear end of a circular linked list	CO2	PO2	07															
	c)	Elaborate the Steps required for converting infix to postfix expression	CO2	PO1	06															
		UNIT - III																		
5	a)	Define queue and elaborate the fundamental operations associated with it.	CO1	PO1	06															
	b)	Write a recursive program to print the Fibonacci series upto 'n' terms.	CO3	PO2	06															
	c)	Provide a code snippet to perform the following operations on a circular queue. i. Enqueue ii. Dequeue	CO2	PO2	08															
		OR																		
6	a)	Write a simple recursive program to calculate the factorial of a non-negative integer.	CO2	PO2	06															
	b)	In a coffee shop, customers arrive to place their orders. Customers C1 and C2 arrive and join the line, followed by C4. The first person at the front of the line is served and leaves the shop. Customer C5 then arrives and joins the end of the line. After C2 is served, C4 places the order and leaves the shop. The last customer to arrive at the counter is, but has not yet been served. Create a pictorial representation of each stage of the given scenario.	CO3	PO2	06															
	c)	Write a Python program to implement a dynamic queue using a singly linked list without a fixed size.	CO1	PO2	08															
		UNIT - IV																		
7	a)	Define binary search tree. Draw the BST for the following input: 14, 15, 4, 9, 7, 18, 3, 5, 16, 20, 17, 29, 21, 19, 2, 12, 27.	CO3	PO2	10															
	b)	Define Complete binary tree with an example. Provide a code snippet to traverse the tree using in-order, pre-order and post-order.	CO3	PO1	10															
		OR																		
8	a)	What is the advantage of the threaded binary tree over binary tree? construct double threaded binary tree for the following inputs: 10, 8, 7, 9, 15, 12 and 18.	CO3	PO2	10															
	b)	Given in-order and post-order traversals of a binary search tree, construct the binary search tree and perform pre-order traversal: In-order: 10, 30, 40, 50, 60, 70, 90 post-order : 10, 40, 30, 60, 90, 70, 50	CO3	PO2	10															

UNIT - V					
	9	a)	Describe the concept of a Red-Black Tree and outline its key properties. Highlight the importance of its balance and color rules in preserving the tree's structure.	CO1	PO1 05
		b)	Explain the concept of a Splay Tree along with its rotations.	CO1	PO1 05
		c)	Given the following set of numbers {63, 9, 19, 27, 18, 108, 99, 81} construct an AVL tree by inserting each number into the tree one by one.	CO3	PO2 10
OR					
	10	a)	What is an AVL Tree? Describe its rotations and outline the advantages of AVL Trees over Binary Search Tree (BST)	CO1	PO1 05
		b)	Construct a splay tree by inserting elements 16, 27, 9, 11, 36, 54, 81 and 63.	CO3	PO2 10
		c)	Describe the concepts of height and balance factor of a node in an AVL tree by providing a simple example.	CO1	PO1 05

B.M.S.C.E. - ODD SEM 2024/25