

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence & Machine Learning

Duration: 3 hrs.

Course Code: 20AM3ESLDA

Max Marks: 100

Course: LOGIC DESIGN AND COMPUTER ARCHITECTURE

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Simplify the following Boolean expression using the Karnaugh Map (K-map) method and the entered variable technique:</p> $Y=F(A,B,C,D)=\pi M(0,1,2,4,5,10).d(8,9,11,12,13,15)$ <p>Provide the simplified Sum-of-Products (SOP) form and a gate diagram for the simplified Boolean expression using NOR-NOR gates.</p>	CO1	PO2	10
	b)	What are universal gates? Demonstrate how basic logic gates (AND, OR, NOT) can be realized using only NAND gates.	CO1	PO1	05
	c)	Explain the working of a parity checker using suitable examples. Illustrate how they can be used in error detection and correction.	CO2	PO1	05
OR					
2	a)	Design a parity generator for a 4-bit data input. Explain the steps involved in generating both even and odd parity.	CO2	PO3	04
	b)	<p>Use the Quine-McClusky method to simplify the Boolean function: $F(A,B,C,D)=\Sigma m(1,2,4,5,6,8,9,10,12)$</p> <p>Find the prime implicants and write the simplified Boolean expression. Implement the simplified function using NAND gates.</p>	CO1	PO3	10
	c)	<p>Using a 3-to-8 decoder and a multi-input OR gate, show how the following Boolean expressions can be realized:</p> <ul style="list-style-type: none"> • $F_1(A,B,C)=\Sigma m(0,4,6)$ • $F_2(A,B,C)=\Sigma m(0,5)$ • $F_3(A,B,C)=\Sigma m(1,2,3,7)$ <p>Explain how the decoder and OR gates work together in implementing the above functions.</p>	CO2	PO3	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Design an SR flip-flop using NOR gates. Write the truth table and the characteristic equation of the SR flip-flop.	CO3	PO3	08
	b)	Design an Asynchronous 3-bit up-counter using JK flip-flops. Draw the counter diagram and show the state transitions for each clock pulse.	CO3	PO3	08
	c)	Explain the operation of a D flip-flop. Derive its characteristic equation.	CO2	PO1	04
OR					
4	a)	Explain the operation of a JK flip-flop. Draw its timing diagram for each possible combination of J and K inputs (00, 01, 10, 11).	CO2	PO1	07
	b)	Design a 4-bit parallel-in, parallel-out shift register using D flip-flops. Explain its working with waveforms.	CO2	PO3	07
	c)	Derive the characteristic equation of a T flip-flop and explain its working for input combinations T=0T = 0T=0 and T=1T = 1T=1.	CO2	PO3	06
UNIT - III					
5	a)	Given a system with a data bus of 16 bits, explain how data is transferred between the CPU and memory when the CPU needs to fetch a 32-bit word. Illustrate with a diagram.	CO3	PO3	07
	b)	What is performance measurement in computer systems? Describe how the overall SPEC rating is calculated for a computer using a given program suite.	CO2	PO1	07
	c)	Describe direct addressing mode and immediate addressing mode with examples.	CO2	PO1	06
OR					
6	a)	Use immediate addressing and indirect addressing to write assembly language instructions that load the value 25 into Register R1 and the value stored at memory location 5000 into Register R2.	CO2	PO3	08
	b)	Calculate the effective address of the operand for the following instruction: Load 30(R2), R3, where R2 = 4500. Show your steps clearly.	CO3	PO3	06
	c)	Explain the concept of a bus in computer systems. What are the different types of buses, and what roles do they play?	CO2	PO1	06
UNIT - IV					
7	a)	Explain the concept of vectored interrupts and how they differ from non-vectored interrupts.	CO3	PO1	05

	b)	Explain how signed numbers are represented in 2's complement form. Perform the addition of (+25) and (-15) using 2's complement representation.	CO3	PO1	05
	c)	Design a 4-bit carry-lookahead adder and explain its working with a block diagram.	CO3	PO3	10
		OR			
8	a)	Describe the process of interrupt handling and the role of interrupt service routines (ISRs).	CO1	PO1	06
	b)	Perform multiplication of the following signed numbers using Booth's algorithm: <ol style="list-style-type: none"> $(+14) \times (-5)$ $(-12) \times (-11)$ $(14) \times (-6)$ 	CO3	PO3	08
	c)	Compare and contrast the following I/O techniques: Programmed I/O, Interrupt-driven I/O, and Direct Memory Access (DMA).	CO2	PO2	06
		UNIT - V			
9	a)	Differentiate hardwired control and microprogrammed control units. Highlight their advantages and disadvantages.	CO2	PO2	10
	b)	Define memory hierarchy in a computer system. Explain the significance of cache memory in improving system performance.	CO2	PO1	05
	c)	What is a single-bus organization? Briefly explain its advantages and disadvantages	CO3	PO1	05
		OR			
10	a)	Discuss the concept of cache memory. Explain associative mapping with the help of a diagram and examples.	CO2	PO1	10
	b)	Compare single-bus, two-bus, and three-bus organizations in terms of data transfer efficiency and complexity.	CO3	PO2	05
	c)	What is a microinstruction? Briefly explain its role in a microprogrammed control unit.	CO3	PO1	05
