

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 22AM3ESLDA

Max Marks: 100

Course: Logic Design and Computer Architecture

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate positive logic and negative logic using a truth table and corresponding logic diagrams.	CO1	PO1	5
	b)	Simplify the following Boolean expressions using a 4-variable Karnaugh map. Draw the K-Map and show the grouping of minterms step by step. Provide the final simplified expression. i. $F(A,B,C,D) = \sum m (0, 1, 3, 5, 7, 9, 11, 13)$ ii. $F(A,B,C,D) = \sum m (1, 2, 5, 6, 9, 12)$	CO1	PO3	8
	c)	Implement a full adder using 3-to-8 decoder.	CO2	PO2	7
OR					
2	a)	Explain the working of basic logic gates and universal gates with truth tables and circuit diagrams. Discuss their significance in digital electronics.	CO1	PO2	10
	b)	Simplify the Boolean expression $F(A,B,C,D) = \sum m (1, 3, 7, 11, 15) + \sum d(0, 2)$ using the Quine-McCluskey method. Identify the prime implicants and essential prime implicants.	CO1	PO3	10
UNIT - II					
3	a)	Explain the working of an RS flip-flop with the help of its logic diagram, truth table, and timing diagram. What is the significance of the indeterminate state?	CO1	PO3	8
	b)	Explain the concept of edge triggering in flip-flops. Compare positive edge-triggered and negative edge-triggered flip-flops with suitable diagrams and timing diagrams.	CO1	PO2	6
	c)	With a neat diagram, explain 4-bit universal shift registers.	CO1	PO3	6
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	Discuss the need for gated flip-flops in sequential circuits. Design a gated D flip-flop and explain its working with an example.	CO1	PO3	7
		b)	Design a JK master-slave flip-flop using basic logic gates. Explain its behavior for all possible input combinations.	CO1	PO3	7
		c)	Design a 3-bit synchronous up-counter as a synthesis problem. Derive the state transition table, simplify the logic, and implement the design using flip-flops.	CO2	PO3	6
UNIT - III						
	5	a)	Elucidate the intricate components constituting the functional unit within a computer system.	CO2	PO2	5
		b)	Elaborate the significance of the Accumulator register within computer architecture.	CO3	PO2	5
		c)	Explain the concept of bus interconnection in computer systems. Discuss the types of buses used in a computer architecture, and explain their role in data communication between the CPU, memory, and I/O devices.	CO3	PO3	10
OR						
	6	a)	Describe the role of the Control Unit (CU) in a computer system. How does it coordinate the operation of other components like the Arithmetic Logic Unit (ALU), memory, and I/O devices?	CO3	PO2	10
		b)	Describe the different types of interconnection structures used in computer systems. Compare and contrast these structures in terms of scalability, cost, and performance.	CO3	PO3	10
UNIT - IV						
	7	a)	Explain the working of a Carry Look-Ahead Adder (CLA). How does it improve the speed of binary addition compared to a conventional Ripple Carry Adder (RCA)?	CO2	PO2	8
		b)	Perform carry save multiplier for: $(1011 * 1101)$.	CO2	PO3	4
		c)	Explain the concept of cache mapping in computer architecture. Describe and compare the three common types of cache mapping: direct-mapped, fully associative, and set-associative.	CO2	PO2	8
OR						
	8	a)	Design a 4-bit Carry Save Adder (CSA) and explain its operation. How does it enhance the speed of multi-operand addition in digital circuits?	CO3	PO2	10
		c)	Construct a Booth recoding table and implement the Booth multiplication algorithm to compute the product of +13 and -6. Additionally, execute carry-save addition (CSA) for the binary numbers 101101 (Multiplicand) and 111111 (Multiplier).	CO3	PO3	10

UNIT - V					
	9	a)	Distinguish between hardware control unit and micro programmed control unit.	<i>CO2</i>	<i>PO2</i> 6
		b)	Describe the different types of addressing modes commonly used in processors with an example. Discuss the importance of addressing modes in accessing data from memory.	<i>CO3</i>	<i>PO3</i> 10
		c)	Illustrate the mechanism of the Hardwired control unit with a neat labelled diagram to ensure team comprehends the operation.	<i>CO3</i>	<i>PO2</i> 4
OR					
	10	a)	Elaborate on the fundamental components inherent to a microprogrammed control unit. Provide an illustrative example to demonstrate their functionality within control unit architecture.	<i>CO2</i>	<i>PO2</i> 10
		b)	How do basic instruction types operate within computer programming paradigms? Evaluate: $(A+B) * (C+D)$ by considering 3 basic instruction addresses.	<i>CO1</i>	<i>PO1</i> 10
