

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester : III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 23AM3PCOOP

Max Marks: 100

Course: Object Oriented Programming

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
1	a)	Create a Country class with attributes for name, capital, and population. Instantiate two country objects with diverse attributes.		<i>CO2</i>	<i>PO3</i>	06
	b)	Differentiate functional and object-oriented programming languages. Provide relevant code snippets for each.		<i>CO1</i>	<i>PO1</i>	08
	c)	Describe the functioning of the interpreter for a generic abstract machine with a neat diagram.		<i>CO1</i>	<i>PO1</i>	06
			UNIT - II			
2	a)	Design a class named Menu_Item to encapsulate information about items on restaurant menu in python. Include private attributes for the item name, price, and dietary information. Implement methods for setting and getting these attributes. Also, include a method to determine if the item is vegetarian.		<i>CO3</i>	<i>PO3</i>	08
	b)	Differentiate anonymous functions over regular functions. Demonstrate lambda functions to find the largest element in a list.		<i>CO3</i>	<i>PO2</i>	05
	c)	Illustrate different types of methods in python. Complete the following code with relevant type of method. Class Rectangle: <pre>def __init__(self, length, width): // fix the code def calculate_area(self): // fix the code def calculate_perimeter(self): // fix the code rectangle_instance = Rectangle(5, 8) area = rectangle_instance.calculate_area() perimeter = rectangle_instance.calculate_perimeter()</pre>		<i>CO2</i>	<i>PO3</i>	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
3	a)	Develop a python program to mimic the scenario in the following diagram using encapsulation:	CO3	PO3	05
		<pre> classDiagram class Dog { attributes: is_thirsty, name methods: drink_water } class dog1(Dog) { attributes: is_thirsty: True, name: "Rover" methods: drink_water } class dog2(Dog) { attributes: is_thirsty: True, name: "Spot" methods: drink_water } class dog3(Dog) { attributes: is_thirsty: True, name: "Sparky" methods: drink_water } Dog < -- dog1 Dog < -- dog2 Dog < -- dog3 </pre>			
	b)	Develop an interactive simple calculator using functions which takes user input and performs basic arithmetic operations like addition, subtraction, multiplication, and division based on user's choice.	CO3	PO3	10
	c)	Illustrate the declaration and scope of different access modifiers in python.	CO2	PO2	05
		UNIT - III			
4	a)	<p>Consider the scenario given below and answer the following questions:</p> <ol style="list-style-type: none"> Identify the type of inheritance in the scenario given below. Assess the efficiency of the execution of the method 'quality ()' in the 'Child' class. Substantiate your response. Illustrate the approach through which Python addresses the issue identified in question (ii). <pre> classDiagram class Grand_Father { methods: Void quality() } class Father { methods: Overridden quality() } class Mother { methods: Overridden quality() } class Child { methods: } Grand_Father --> Father : extends Grand_Father --> Mother : extends Father --> Child : extends Mother --> Child : extends </pre>	CO2	PO1	05
	b)	Design a Python class named Shape that serves as an abstract representation of geometric shapes. Include abstract methods	CO3	PO3	10

		area and perimeter within the class. Derive two classes, Rectangle and Circle, from the Shape class. Implement these classes to calculate and return the area and perimeter for rectangles and circles.			
	c)	How do you access parent class in child class? Provide your answer with an example.	CO2	PO1	05
		OR			
5	a)	Develop a program to simulate a multimedia player. Create a base class Media with attributes like title and duration. Derive classes Audio and Video from Media. Media Player class inherits from both Audio and Video. Implement methods to play, pause, and stop media.	CO3	PO3	10
	b)	Illustrate 'is-a' relation of OOPs principle with one example.	CO2	PO1	05
	c)	Demonstrate the application of name mangling and the effective use of getters and setters in a Python class.	CO2	PO3	05
		UNIT - IV			
6	a)	Define polymorphism. Demonstrate the following ways of implementing polymorphism in python with an example for each. <ul style="list-style-type: none"> i. User defined Method overloading. ii. Overloading in Built in methods. 	CO3	PO1	08
	b)	Illustrate the functions of various blocks in exception handling with an example.	CO2	PO2	08
	c)	Illustrate operator overloading with an example program	CO2	PO3	04
		UNIT - V			
7	a)	Define thread synchronization. Write a python program to create two synchronized threads, where first thread will print odd numbers and second thread will print even numbers between 1 to 20 numbers.	CO3	PO3	10
	b)	Describe life cycle of thread with suitable diagram.	CO1	PO1	06
	c)	Define the following: <ul style="list-style-type: none"> i. Daemon threads ii. Thread pools iii. Inter-Thread Communication iv. Thread Deadlock 	CO1	PO1	04
