

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 20AM3PCTFC

Max Marks: 100

Course: Theoretical Foundations of Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may suitably assumed.

UNIT - I

1. a) Define Alphabet, String, Language and Power of an alphabet with example. **4**
- b) Define DFA and NFA with an example. **8**
- c) Show that “A Language L is accepted by some ϵ -NFA if and only if L is accepted by some DFA”. **8**

OR

2. a) Construct a DFA to accept the following languages **10**
 - i. $L = \{w \in w \text{ is of even length and begins with } 01\}$
 - ii. $L = \{w \in w \text{ is a set of all strings consists of } 1101 \text{ as a substring}\}$
- b) Construct a NFA to accept the following languages **10**
 - i. $L = \{w \in \{a,b,c,d,l\}^* : w \text{ has at least one occurrence of lab, cab, and dab}\}$
 - ii. $L = \{w \text{ accepts decimal numbers}\}$

UNIT - II

3. a) Design REs for the following languages over $\{0,1\}$ **6**
 - i. The set of all strings that begin with 110.
 - ii. The set of all strings that contain 1011.
 - iii. The set of all strings that contain exactly three 1's
- b) Design NFA with ϵ - transitions for the following REs **6**
 - i. $011(0+1)^*$
 - ii. $(0+1)^*1(0+1)$
- c) State and prove pumping lemma for regular languages. **8**

UNIT - III

4. a) Define ambiguous and unambiguous grammar. 6
Show that the following grammar is ambiguous by considering the string aabbccdd.
 $S \rightarrow AB \mid C$
 $A \rightarrow aAb \mid ab$
 $B \rightarrow cBd \mid cd$
 $C \rightarrow aCd \mid aDd$
 $D \rightarrow bDc \mid bc$

b) Explain the applications of CFG. 4

c) Eliminate Useless Symbols, Epsilon productions and Unit productions from the following grammar. 10
 $S \rightarrow aACa$
 $A \rightarrow B \mid a$
 $B \rightarrow C \mid c$
 $C \rightarrow cC \mid \epsilon$

UNIT - IV

5. a) Define CNF. Convert the following grammar to CNF. 6
 $E \rightarrow E + T \mid T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $T \rightarrow T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $F \rightarrow (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

b) Define GNF. Convert the following grammar to GNF. 8
 $S \rightarrow AA \mid 0$
 $A \rightarrow SS \mid 1$

c) State the pumping lemma for CFLs. 6
Show that the following language is not CFL.
 $L = \{x \in \{0,1\}^* \mid |x| \text{ is a perfect square}\}$

OR

6. a) Define PDA. Construct PDA for the following language. 10
 $L = \{a^n b^n \mid n \geq 1\}$ and
Show the sequence of moves made by the PDA for the string aaabbb.

b) Define Deterministic PDA. 10
Construct PDA for the following language.
 $L = \{wcw^R \mid w \in \{a+b\}^*\}$
Examine whether the PDA is deterministic are not.

UNIT - V

7. a) Design PDA from the following grammar 10
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I1 \mid I0$
 $E \rightarrow I \mid E^* E \mid E + E \mid (E)$

b) Define TM. Construct a TM which accepts the set of all palindromes over $\{a,b\}$. 10
