

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 20AM3PCTFC

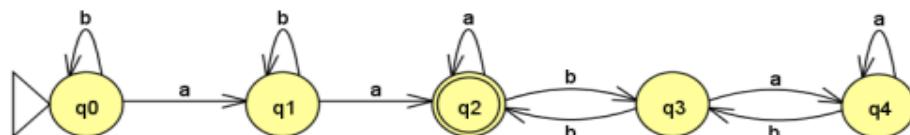
Course: Theoretical Foundations of Computations

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 15.09.2023


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may suitably assumed.

UNIT - I

1. a) Construct deterministic automata to accept some number of a's followed by some number of b's with the total length of the string being odd. 8
 b) Bring out the differences between DFA, NFA and ϵ - NFA 4
 c) Construct a Non-deterministic Finite Automaton (NFA) for Binary strings that begin with 11 and end with 11 or begin with 00 and end with 00. 8

OR

2. a) Define the following with proper examples: 8
 i. Symbols
 ii. Alphabet
 iii. Strings
 iv. Languages
 b) Analyze the given automata and define the language accepted. 4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

- c) Construct a finite automaton for 8
 i. Binary strings in which every 0 is followed by 11.
 ii. Strings containing at least one a and at least one b.

UNIT - II

3. a) Write the equivalent regular expression for the following languages: **10**
- $L = \{ a^n b^m \mid m+n \text{ is even} \}$
 - $L = \{ a^n b^m \mid m \geq 1, n \geq 1, nm \geq 3 \}$
 - $L = \{ w : |w| \bmod 3 = 0 \text{ where } w \in (a+b)^* \}$
 - $L = \{ w : n_a(w) \bmod 3 = 0 \text{ where } w \in (a+b)^* \}$
- b) Prove that the following languages are not regular. **10**
- $L = \{ a^n b^l \mid n \neq l \}$
 - $L = \{ a^{n!} \mid n \geq 0 \}$

UNIT - III

4. a) Generate grammar for the following language: **8**
 $L = L_1 L_2$ where,
 $L_1 = \{ a^n b^m \mid n \geq 0, m > n \}$
 $L_2 = \{ 0^n 1^{2n} \mid n \geq 0 \}$
- b) Analyse and check the given grammar for ambiguity of the expression **6**
 $id + id^* id$
- $E \rightarrow E+E \mid E-E \mid E^*E \mid E/E \mid (E) \mid I$
 $I \rightarrow id$
- c) Eliminate all unit productions from the grammar given below: **6**
- $S \rightarrow AB \quad A \rightarrow a \quad B \rightarrow C/b$
 $C \rightarrow D \quad D \rightarrow E/bC \quad E \rightarrow d/Ab$

UNIT - IV

5. a) Show that the language $L = \{ w \mid w = (a, b, c)^* \}$ where $n_a(w) = n_b(w) = n_c(w)$ is not in CFL. **10**
- b) Convert the following grammar into Chomsky Normal Form. **10**
- $S \rightarrow 0A/1B$
 $A \rightarrow 0AA/1S/1$
 $B \rightarrow 1BB/0S/0$

OR

6. a) Construct PDA to accept the language **10**
 $L(M) = \{ w \mid w = (a, b)^* \text{ and } n_a(w) = n_b(w) \}$ by final state.
- b) Analyse the language given below and construct PDA for the same. **10**
Justify whether it is Deterministic or Non deterministic.
 $L = \{ ww^R \mid w = (a, b)^* \}$

UNIT - V

7. a) Apply the concepts of Turing machine and construct the same for the language $L = (ab + ba)(a+b)^*(ba+ab)$ **12**
- b) Write a note on : **8**
- Recursive language
 - Post correspondence Problem