

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 22AM3PCTFC

Max Marks: 100

Course: Theoretical Foundations of Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as	1	a)	Explain Type 2 and Type 3 grammars.					
		b)	Design a Finite Automaton that accepts the words “the”, “this”, “that” and “to”.			<i>CO1</i>	<i>PO1</i>	06
		c)	Differentiate between Deterministic Finite Automata (DFA), Non-Deterministic Finite Automata (NFA), and Epsilon-NFA (ϵ -NFA).			<i>CO3</i>	<i>PO3</i>	08
			OR					
	2	a)	Write any 3 real time applications of DFA and explain.			<i>CO1</i>	<i>PO1</i>	06
		b)	Design a NFA for a set of strings such that the 5 th symbol from the right end is 1.			<i>CO3</i>	<i>PO3</i>	08
		c)	Elaborate on the process of determining the Epsilon closure of an Automaton states with an example.			<i>CO2</i>	<i>PO2</i>	06
			UNIT - II					
	3	a)	Construct NFA for the Regular Expression (RE): $(1+0)0^*$			<i>CO3</i>	<i>PO3</i>	10
		b)	Write any 5 closure properties of Regular Languages.			<i>CO1</i>	<i>PO1</i>	05
		c)	Explain the process of minimizing an Automaton.			<i>CO2</i>	<i>PO2</i>	05
			OR					
	4	a)	Apply Kleene’s theorem and convert the given DFA to its equivalent RE representation.			<i>CO3</i>	<i>PO3</i>	10

		<pre> graph LR Start((Start)) --> 3((3)) 3 -- 0 --> 3 3 -- 1 --> 1((1)) 1 -- 0 --> 1 1 -- 1 --> 2(((2))) 2 -- 0 --> 2 2 -- 1 --> 3 </pre>		
	b)	Prove that $L = \{a^n b^n \mid n > 0\}$ is not regular.	CO2	PO2
	c)	Describe the following in the form of Regular Expression (RE) <ol style="list-style-type: none"> Set of all strings of 0's and 1's ending in 00 All strings of 0's and 1's 	CO3	PO3
UNIT - III				
5	a)	Write 5 applications of Context Free Grammar (CFG).	CO1	PO1
	b)	Eliminate useless symbols in G $S \rightarrow AB \mid CA$ $S \rightarrow BC \mid AB$ $A \rightarrow a$ $C \rightarrow aB \mid b$	CO3	PO3
	c)	Write the procedural steps that is to be followed to convert the given grammar to Chomsky Normal Form (CNF).	CO2	PO2
OR				
6	a)	Prove that Context Free Languages are closed under Union.	CO2	PO2
	b)	Eliminate unit productions in the grammar $S \rightarrow A \mid bb$ $A \rightarrow B \mid b$ $B \rightarrow S \mid a$	CO3	PO3
	c)	Check whether the given Grammar with the following productions is Ambiguous or not. $S \rightarrow aS \mid aSb \mid X$ $X \rightarrow Xa \mid a$	CO2	PO2
UNIT - IV				
7	a)	Design a Pushdown Automata (PDA) to accept the language $L = \{0^n 1^{2n} \mid n \geq 1\}$	CO3	PO3
	b)	Differentiate between PDA and Non-Deterministic PDA (NPDA).	CO2	PO2
	c)	Explain the process to be followed to construct a CFG for the given PDA.	CO1	PO1
OR				
8	a)	Design a NPDA that accepts the language $L = \{WW^r \mid W \in (a+b)^*\}$	CO3	PO3

		b)	Write any 2 real time applications of PDA and explain.	CO1	PO1	05
		c)	How does PDA accept a language? Explain.	CO2	PO2	05
UNIT - V						
	9	a)	Is it possible for Turing Machines (TMs) to function as language accepters and transducers? Justify.	CO2	PO2	06
		b)	Does the following Post Correspondence Problem (PCP) has a solution: $X = \{b, babbb, ba\}$ $Y = \{bbb, ba, a\}$	CO3	PO3	08
		c)	Elaborate on any 2 applications of TM.	CO1	PO1	06
OR						
	10	a)	Illustrate Multitape and Multidimensional TM with appropriate block diagrams and examples.	CO2	PO2	10
		b)	Design TM to add 2 numbers a and b.	CO3	PO3	10
