

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

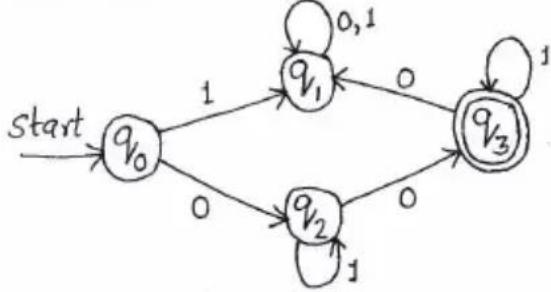
**Programme : B.E.**

**Semester: III**

**Branch: Artificial Intelligence & Machine Learning**

**Duration: 3 hrs.**

**Course Code: 22AM3PCTFC**


**Max Marks: 100**

**Course: Theoretical Foundations of Computations**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>CO</b>  | <b>PO</b>  | <b>Marks</b> |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
|-----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|------------|-----------|
| 1               | a)      | Define a Deterministic Finite Automaton (DFA). Design a DFA to accept strings over the alphabet $\{0,1\}$ that contain an even number of 0s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>CO1</i> | <i>PO1</i> | <b>06</b>    |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
|                 | b)      | Differentiate between Deterministic Finite Automata(DFA) and Non- deterministic Finite Automata(NFA) with examples. Prove that every NFA has an equivalent DFA using a suitable example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>CO1</i> | <i>PO2</i> | <b>06</b>    |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
|                 | c)      | i. Explain the process of minimizing a DFA.<br>ii. Minimize the following DFA and show the steps involved<br>$Q=\{q_0,q_1,q_2,q_3\}$ ,<br>$\Sigma=\{0,1\}$ , $q_0$ is the start state, and $F=\{q_2\}$<br>Transition Table:<br><table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>State</th> <th>Input 0</th> <th>Input 1</th> </tr> </thead> <tbody> <tr> <td><math>q_0</math></td> <td><math>q_1</math></td> <td><math>q_0</math></td> </tr> <tr> <td><math>q_1</math></td> <td><math>q_2</math></td> <td><math>q_3</math></td> </tr> <tr> <td><math>q_2</math></td> <td><math>q_2</math></td> <td><math>q_2</math></td> </tr> <tr> <td><math>q_3</math></td> <td><math>q_3</math></td> <td><math>q_3</math></td> </tr> </tbody> </table> | State      | Input 0    | Input 1      | $q_0$ | $q_1$ | $q_0$ | $q_1$ | $q_2$ | $q_3$ | $q_2$ | $q_2$ | $q_2$ | $q_3$ | $q_3$ | $q_3$ | <i>CO1</i> | <i>PO2</i> | <b>08</b> |
| State           | Input 0 | Input 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |            |              |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
| $q_0$           | $q_1$   | $q_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |            |              |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
| $q_1$           | $q_2$   | $q_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |            |              |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
| $q_2$           | $q_2$   | $q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |            |              |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
| $q_3$           | $q_3$   | $q_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |            |              |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
| <b>OR</b>       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |              |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
| 2               | a)      | Discuss the significance of $\epsilon$ -transitions in automata. Provide an example where $\epsilon$ -transitions simplify the construction of an automaton.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>CO1</i> | <i>PO1</i> | <b>05</b>    |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
|                 | b)      | i. Construct a Deterministic Finite Automata(DFA) to accept decimal strings divisible by 3.<br>ii. Draw transition diagram and provide equivalent transition table for the constructed DFA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>CO1</i> | <i>PO3</i> | <b>08</b>    |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |
|                 | c)      | Convert the following Non- deterministic Finite Automata(NFA) to its equivalent Deterministic Finite Automata(DFA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>CO1</i> | <i>PO2</i> | <b>07</b>    |       |       |       |       |       |       |       |       |       |       |       |       |            |            |           |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\delta$         | 0          | 1         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--|
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\rightarrow p$  | {p, r}     | {q}       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | q                | {r,s}      | {p}       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $*r$             | {p,s}      | {r}       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $*s$             | {q, r}     | null      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>UNIT - II</b> |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
| 3     | a)    | Define Regular expression. Write the regular expression for the following languages:<br>i. Representing for strings of a's and b's having odd length.<br>ii. To accept strings of a's and b's such that third symbol from the right is a and fourth symbol from the right is b.                                                                                                                                                                                                                                                                                                                                           | <i>CO1</i>       | <i>PO2</i> | <b>06</b> |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       | b)    | i. State and prove pumping lemma Theorem.<br>ii. Show that, $L = \{WW^R \mid W \in \{a,b\}^*\}$ is not regular.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>CO1</i>       | <i>PO2</i> | <b>06</b> |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       | c)    | i. Prove that if $L=L(A)$ for some Deterministic Finite Automata(DFA) A, then there is a regular expression R such that $L=L(R)$ .<br>ii. Derive Regular expression for the Deterministic Finite Automata (DFA) using State Elimination Method.                                                                                                                                                                                                                                                                                                                                                                           | <i>CO2</i>       | <i>PO2</i> | <b>08</b> |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       |       | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
| 4     | a)    | Show that regular languages are closed under<br>i. Union, concatenation and Kleens star<br>ii. Intersection and Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>CO1</i>       | <i>PO2</i> | <b>10</b> |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       | b)    | Minimize the following DFA using the lazy evaluation method and show all the steps involved:<br>DFA Description:<br>States: $Q = \{q0, q1, q2, q3, q4\}$<br>Input Alphabet: $\Sigma = \{a, b\}$<br>Start State: $q0$<br>Final States: $F = \{q3, q4\}$                                                                                                                                                                                                                                                                                                                                                                    | <i>CO1</i>       | <i>PO2</i> | <b>10</b> |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
|       |       | <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>State</th> <th>a</th> <th>b</th> </tr> </thead> <tbody> <tr> <td><math>q_0</math></td> <td><math>q_1</math></td> <td><math>q_2</math></td> </tr> <tr> <td><math>q_1</math></td> <td><math>q_3</math></td> <td><math>q_4</math></td> </tr> <tr> <td><math>q_2</math></td> <td><math>q_4</math></td> <td><math>q_3</math></td> </tr> <tr> <td><math>q_3</math></td> <td><math>q_3</math></td> <td><math>q_3</math></td> </tr> <tr> <td><math>q_4</math></td> <td><math>q_4</math></td> <td><math>q_4</math></td> </tr> </tbody> </table> | State            | a          | b         | $q_0$ | $q_1$ | $q_2$ | $q_1$ | $q_3$ | $q_4$ | $q_2$ | $q_4$ | $q_3$ | $q_3$ | $q_3$ | $q_3$ | $q_4$ | $q_4$ | $q_4$ |  |  |  |  |  |  |
| State | a     | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
| $q_0$ | $q_1$ | $q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
| $q_1$ | $q_3$ | $q_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
| $q_2$ | $q_4$ | $q_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
| $q_3$ | $q_3$ | $q_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |
| $q_4$ | $q_4$ | $q_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |            |           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |  |  |  |  |

|   |    | UNIT - III                                                                                                                                                                                                                                                 |     |     |    |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| 5 | a) | <p>Obtain the unambiguous grammar for the grammar shown and get the derivation for the expression <math>(a+b)^*(a-b)</math>.</p> $E \rightarrow E+E \mid E-E$ $E \rightarrow E*E \mid E/E$ $E \rightarrow (E) \mid I$ $I \rightarrow a \mid b \mid c$      | CO2 | PO2 | 06 |
|   | b) | <p>Consider the following grammar</p> $S \rightarrow AbB$ $A \rightarrow aA \mid \epsilon$ $B \rightarrow aB \mid bB \mid \epsilon$ <p>Give LMD and RMD and Parse tree for the string "aabab"</p>                                                          | CO2 | PO2 | 07 |
|   | c) | <p>Define GNF. Convert the grammar to GNF. Explain with detailed steps.</p> $S \rightarrow AB1 \mid 0$ $A \rightarrow 00A \mid B$ $B \rightarrow 1A1$                                                                                                      | CO2 | PO2 | 07 |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                  |     |     |    |
| 6 | a) | <p>Illustrate CFG. Design CFG for the languages</p> i. $L = \{0^{2n} 1^m \mid n \geq 0, m \geq 0\}$<br>ii. $L = \{0^i 1^j 2^k \mid i=j \text{ or } j=k\}$                                                                                                  | CO2 | PO2 | 06 |
|   | b) | <p>Remove <math>\epsilon</math> productions and unit productions from the grammar.</p> $S \rightarrow aA \mid aB$ $A \rightarrow aAA \mid \epsilon$ $B \rightarrow bB \mid bbC$ $C \rightarrow B$                                                          | CO2 | PO2 | 06 |
|   | c) | <p>Convert the following grammar to Chomsky Normal Form(CNF).</p> $S \rightarrow 0A \mid 1B$ $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB \mid 0S \mid 0$                                                                                         | CO2 | PO2 | 08 |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                           |     |     |    |
| 7 | a) | <p>Define a Pushdown Automaton (PDA). Explain how it differs from a Finite Automaton (FA). Discuss real-world applications of PDA with examples.</p>                                                                                                       | CO2 | PO1 | 05 |
|   | b) | <p>Convert the following Context Free Grammar(CFG) to a Pushdown Automata (PDA) and show the moves on aabab.</p> $S \rightarrow aSbb \mid aab$ $S \rightarrow AA \mid a$ $A \rightarrow SA \mid b$                                                         | CO2 | PO2 | 05 |
|   | c) | i. Design a PDA to recognize the language $L = \{w \in \{a,b\}^* \mid w = w^R\}$ , where $w^R$ represents the reverse of $w$ .<br>ii. Justify whether it is deterministic or nondeterministic.<br>iii. Explain the working of PDA taking a example string. | CO2 | PO3 | 10 |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                  |     |     |    |

|  |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |    |  |
|--|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|--|
|  | 8  | a) | <p>i. Construct a PDA for the language<br/> <math>L=\{w \in \{(,),\}^* \mid w \text{ has balanced parentheses}\}</math></p> <p>ii. Show how the PDA processes the string <math>w=(())()</math>.</p>                                                                                                                                                                                                                                                                                                     | CO2 | PO3 | 10 |  |
|  |    | b) | <p>Construct the equivalent CFG for the given PDA <math>M=(\{q0, q1\}, \{0,1\}, \{X, Z0\}, \delta, q0, Z)</math> based on the specified transition functions:</p> <p><math>\delta(q0, 0, Z) = (q0, XZ)</math></p> <p><math>\delta(q0, 0, X) = (q0, XX)</math></p> <p><math>\delta(q0, 1, X) = (q1, \epsilon)</math></p> <p><math>\delta(q1, 1, X) = (q1, \epsilon)</math></p> <p><math>\delta(q1, \epsilon, X) = (q1, \epsilon)</math></p> <p><math>\delta(q1, \epsilon, Z) = (q1, \epsilon)</math></p> | CO2 | PO2 | 10 |  |
|  |    |    | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |    |  |
|  | 9  | a) | Define a Turing Machine (TM) formally. Explain its components and the role of the tape in computation with an example.                                                                                                                                                                                                                                                                                                                                                                                  | CO3 | PO2 | 05 |  |
|  |    | b) | <p>Construct a Turing Machine that computes the sum of two unary numbers separated by a # symbol. For example,<br/> <math>111\#11 \rightarrow 11111</math></p> <p>Describe its operation.</p>                                                                                                                                                                                                                                                                                                           | CO3 | PO3 | 10 |  |
|  |    | c) | State and explain the Halting Problem. Prove that the Halting Problem is undecidable.                                                                                                                                                                                                                                                                                                                                                                                                                   | CO1 | PO1 | 05 |  |
|  |    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |    |  |
|  | 10 | a) | <p>i. Design a Turing machine to accept <math>L=\{0^n 1^n 2^n \mid n \geq 0\}</math>.</p> <p>ii. Draw the transition diagram.</p> <p>iii. Show the moves made for string aabbcc.</p>                                                                                                                                                                                                                                                                                                                    | CO3 | PO3 | 10 |  |
|  |    | b) | <p>i. Explain post correspondence problem with its components.</p> <p>ii. For the alphabet <math>\{a,b\}</math>, consider the tiles: <math>A=(a,ab)</math>, <math>B=(ba,b)</math>, <math>C=(b,aba)</math>. Verify whether there exists a finite solution for this instance.</p> <p>iii. Provide an example of tiles in the Post Correspondence Problem where no solution exists.</p>                                                                                                                    | CO3 | PO1 | 10 |  |

\*\*\*\*\*