

B.M.S. College of Engineering, Bengaluru-560019

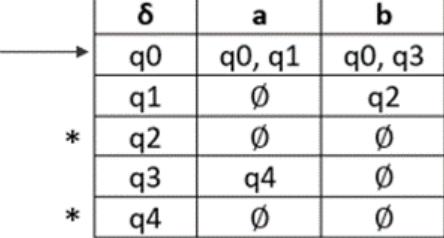
Autonomous Institute Affiliated to VTU

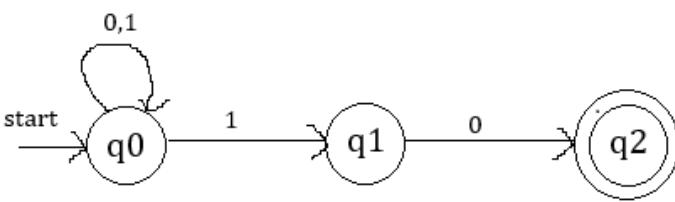
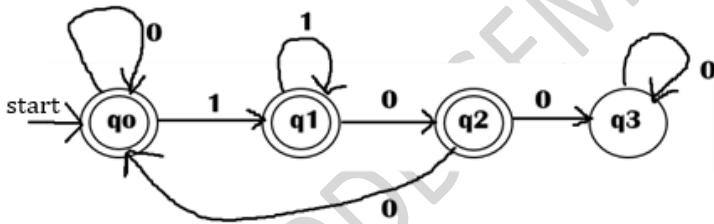
April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning


Duration: 3 hrs.



Course Code: 23AM3AETFC

Max Marks: 100

Course: Theoretical Foundations of Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																		
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Illustrate the concept of Deterministic Finite Automata (DFA) along with its definition.	CO1	PO2	05																	
		b)	Design a Deterministic Finite Automata (DFA) that accepts the language over the alphabet $\Sigma = \{0,1\}$ <ol style="list-style-type: none"> $L = \{w \in w \text{ is of even length and begins with } 10\}$. $L = \{w \in w \text{ is a set of all strings not consisting } 1010 \text{ as a substring}\}$. 	CO1	PO3	08																	
		c)	Write transition diagram for the given transition table and convert the Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA) using the Lazy Evaluation Method. <table border="1" style="margin-left: 20px; border-collapse: collapse;"> <tr> <th>δ</th> <th>a</th> <th>b</th> </tr> <tr> <td>q0</td> <td>q0, q1</td> <td>q0, q3</td> </tr> <tr> <td>q1</td> <td>\emptyset</td> <td>q2</td> </tr> <tr> <td>q2</td> <td>\emptyset</td> <td>\emptyset</td> </tr> <tr> <td>q3</td> <td>q4</td> <td>\emptyset</td> </tr> <tr> <td>q4</td> <td>\emptyset</td> <td>\emptyset</td> </tr> </table>	δ	a	b	q0	q0, q1	q0, q3	q1	\emptyset	q2	q2	\emptyset	\emptyset	q3	q4	\emptyset	q4	\emptyset	\emptyset	CO1	PO2
δ	a	b																					
q0	q0, q1	q0, q3																					
q1	\emptyset	q2																					
q2	\emptyset	\emptyset																					
q3	q4	\emptyset																					
q4	\emptyset	\emptyset																					
OR																							
	2	a)	Define Alphabet, Language, String, Power of an alphabet, and Cardinality with an example.	CO1	PO1	05																	
		b)	Construct a Deterministic Finite Automata (DFA) that accepts the language $L = \{w \text{ is a binary number divisible by } 5\}$ over the alphabet $\Sigma = \{0,1\}$	CO1	PO3	08																	
		c)	i. Identify the language accepted by the given Non-Deterministic Finite Automata (NFA).	CO1	PO2	07																	

		<p>ii. Convert the Non- Deterministic Finite Automata (NFA) to its equivalent Deterministic Finite Automata (DFA) using the Subset Construction method.</p>														
		UNIT - II														
3	a)	<p>State Pumping Lemma for regular languages and prove that $L = \{a^n b^n : n \text{ is an integer}\}$ is not regular.</p>	CO1	PO1												
	b)	<p>i. Write Regular Expression to accept strings of a's and b's starting with ab.</p> <p>ii. Construct ϵ-NFA for the Regular Expression obtained in (i).</p>	CO1	PO2												
	c)	<p>Obtain Regular Expression for the DFA using State Elimination Method.</p>	CO1	PO2												
		OR														
4	a)	<p>Design Regular Expressions for the languages over the alphabet $\Sigma = \{0,1\}$</p> <ol style="list-style-type: none"> The set of all strings that begin with 110 The set of all strings that do not end with 01. The set of all strings whose length is divisible by 3. 	CO1	PO1												
	b)	<p>Apply Kleen's Theorem to derive the Regular Expression of the DFA.</p> <table border="1" data-bbox="611 1583 881 1729"> <tr> <td>δ</td><td>0</td><td>1</td></tr> <tr> <td>→1</td><td>2</td><td>1</td></tr> <tr> <td>2</td><td>3</td><td>1</td></tr> <tr> <td>*3</td><td>3</td><td>2</td></tr> </table>	δ	0	1	→1	2	1	2	3	1	*3	3	2	CO1	PO1
δ	0	1														
→1	2	1														
2	3	1														
*3	3	2														
	c)	<p>Minimize the Deterministic Finite Automata (DFA) using the Myhill Nerode Method.</p>	CO1	PO2												

		<table border="1"> <tr><td>δ</td><td>0</td><td>1</td></tr> <tr><td>-> A</td><td>B</td><td>E</td></tr> <tr><td>B</td><td>C</td><td>F</td></tr> <tr><td>*C</td><td>D</td><td>H</td></tr> <tr><td>D</td><td>E</td><td>H</td></tr> <tr><td>E</td><td>F</td><td>I</td></tr> <tr><td>*F</td><td>G</td><td>B</td></tr> <tr><td>G</td><td>H</td><td>B</td></tr> <tr><td>H</td><td>I</td><td>C</td></tr> <tr><td>*I</td><td>A</td><td>E</td></tr> </table>	δ	0	1	-> A	B	E	B	C	F	*C	D	H	D	E	H	E	F	I	*F	G	B	G	H	B	H	I	C	*I	A	E			
δ	0	1																																	
-> A	B	E																																	
B	C	F																																	
*C	D	H																																	
D	E	H																																	
E	F	I																																	
*F	G	B																																	
G	H	B																																	
H	I	C																																	
*I	A	E																																	
		UNIT - III																																	
5	a)	i. Define ambiguous and unambiguous grammar. ii. Consider the Grammar $S \rightarrow S^*S \mid S+S \mid S-S \mid b \mid c$. Show that the grammar is ambiguous for the string $w=b+c^*b-c$.	CO2	PO1	06																														
	b)	Obtain Context Free grammar to generate strings belonging to the given languages i. $L = \{w : na(w) \geq 1, w \in \{a,b\}^*\}$ ii. $L = \{w : na(w) \leq 3, w \in \{a,b\}^*\}$ iii. $L = \{w = 0^n 1^m \mid n \geq 0, m \geq 0\}$	CO2	PO2	06																														
	c)	Write Left most derivation(LMD), Right most derivation(RMD), and parse tree for the string $w=+^*xyxy$ using the grammar $E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y$	CO2	PO1	08																														
		OR																																	
6	a)	Convert the given grammar to Chomsky Normal Form (CNF) $E \rightarrow T^*E \mid T-E \mid T$ $T \rightarrow T+F \mid F$ $F \rightarrow a \mid (\mid E)$	CO2	PO2	10																														
	b)	i. Is the language $L = \{x^n y^n z^n \mid n \geq 1\}$ context free? Justify. ii. Elaborate on the closure properties of Context-Free Language (CFL).	CO2	PO2	10																														
		UNIT - IV																																	
7	a)	i. Construct Pushdown Automata (PDA) to accept the language. $L = \{a^n b^{2n} \mid n \geq 1\}$. ii. Draw the transition diagram for the constructed PDA. iii. Provide the instantaneous description for the string aabbabb.	CO2	PO3	10																														
	b)	i. Convert the given Context Free Grammar (CFG) to Pushdown Automata (PDA) $S \rightarrow aABC$ $A \rightarrow aB \mid a$ $B \rightarrow bA \mid b$ $C \rightarrow a$ ii. Provide the moves for the string aabba for the PDA in (i).	CO2	PO2	10																														
		OR																																	

	8	a)	i. Design a Pushdown Automata (PDA) for the language $L=\{wcw^R, w \in \{a,b\}^*\}$. Is it deterministic? Justify. ii. Show the moves for the string abaaba.	CO2	PO2	10												
		b)	Convert the given Pushdown Automata (PDA) $M=(\{q\}, \{0,1\}, \{Z, A, B\}, \delta, q, Z)$ to its equivalent Context Free Grammar(CFG). The transition functions are as follows: $\delta(q, 0, B) = (q, \epsilon)$ $\delta(q, 1, A) = (q, \epsilon)$ $\delta(q, 1, Z) = (q, \epsilon)$ $\delta(q, 0, Z) = (q, AZ)$ $\delta(q, 1, Z) = (q, BZ)$ $\delta(q, 0, A) = (q, AA)$ $\delta(q, 1, B) = (q, BB)$	CO2	PO2	10												
			UNIT - V															
	9	a)	Illustrate the Turing machine (TM) using its 7-tuple representation.	CO3	PO2	05												
		b)	Differentiate between Turing machine (TM) as an acceptor and TM as a transducer.	CO3	PO1	05												
		c)	Provide a formal description of the Turing Machine (TM) that accepts the language $L = \{w=0^n1^n2^n \mid n \geq 0\}$. Prove the acceptance of the string 001122 using an instantaneous description.	CO3	PO2	10												
			OR															
	10	a)	Design a Turing Machine (TM) to accept the language containing strings of 0's and 1's with a substring 001.	CO3	PO3	07												
		b)	Consider 2 integer numbers x and y in unary representation of 1's only. Design a Turing Machine in the role of transducers to perform the addition operation $x+y$.	CO3	PO1	07												
		c)	Is there a solution to the following Post Correspondence Problem (PCP)? <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>i</th> <th>A</th> <th>B</th> </tr> <tr> <td>1</td> <td>100</td> <td>1</td> </tr> <tr> <td>2</td> <td>0</td> <td>100</td> </tr> <tr> <td>3</td> <td>1</td> <td>00</td> </tr> </table>	i	A	B	1	100	1	2	0	100	3	1	00	CO3	PO1	06
i	A	B																
1	100	1																
2	0	100																
3	1	00																
