

B.M.S. College of Engineering, Bengaluru-560019

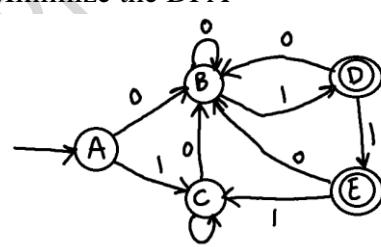
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Artificial Intelligence and Machine Learning


Duration: 3 hrs.

Course Code: 23AM3AETFC

Max Marks: 100

Course: Theoretical Foundations of Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	i. Design a Deterministic Finite Automaton (DFA) to accept the strings of the language $L(M) = \{a^n b, n \geq 0\}$ ii. Illustrate the acceptance and rejection of the strings "aaab" and "aba" by the resultant DFA using the instantaneous descriptions.	CO1	PO1	08
	b)	Convert the given Non-Deterministic Finite Automaton (NFA) to DFA	CO1	PO1	06
	c)		CO2	PO2	06
OR					
2	a)	Design NFA for the language $L(M) = 01^*0^*1$	CO3	PO3	06
	b)	Minimize the DFA	CO1	PO1	06
	c)		CO3	PO3	08
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	Construct an ϵ -NFA that accepts decimal numbers consisting of i. An optional +/- sign ii. A string of digits iii. A decimal Point iv. Another string of digits followed by (iii) [Note: either this string or the string in (ii) can be empty, but not both] and convert the same to its equivalent DFA representation.				

UNIT - II					
3	a)	Convert the given regular expressions to equivalent NFA i. $(a b)^*ab$ ii. $(ab ba)^*$	CO2	PO2	06
	b)	Construct the regular expression of the automaton using state elimination technique. 	CO1	PO1	10
	c)	Show that the language $L = \{WW^R \mid W \ (0+1)^*\}$ is not regular	CO2	PO2	04
UNIT - III					
4	a)	Derive a sample string accepted by the given grammar and verify whether the grammar is ambiguous or not. $S \rightarrow a \mid abSb \mid aAb$ $A \rightarrow bS \mid aAAb$	CO2	PO2	04
	b)	Define Chomsky Normal Form (CNF) and convert the given grammar to CNF. Verify the grammar suitability for CNF representation before starting the conversion process. $S \rightarrow AB \mid DDA \mid CB \mid DD$ $A \rightarrow CCD$ $B \rightarrow DDA \mid DD$ $C \rightarrow a$ $D \rightarrow b$	CO3	PO3	08
	c)	i. Outline the procedure for eliminating unit productions from CFG. ii. Apply the stated procedure to the CFG $S \rightarrow Aa \mid B$ $B \rightarrow A \mid bb$ $A \rightarrow a \mid bc \mid B$	CO3	PO3	08
OR					
5	a)	Show that the language $L = \{0^P \mid P \text{ is prime}\}$ is not Context Free.	CO2	PO2	04
	b)	Define Greibach Normal Form (GNF) and convert the given grammar to GNF after verifying all the necessary pre-requisite conditions. $S \rightarrow aY \mid XX$ $X \rightarrow aZ \mid aYXZ \mid a \mid aYX$ $Z \rightarrow XXZ \mid XX$ $Y \rightarrow b$ $A \rightarrow a$	CO3	PO3	08
	c)	Eliminate useless symbols from the CFG by justifying the eliminations with proper reasoning. $S \rightarrow AB \mid AC$	CO3	PO3	08

		$A \rightarrow aAb \mid bAa \mid a$ $B \rightarrow bbA \mid aaB \mid AB \mid b$ $E \rightarrow d$ $C \rightarrow abCA \mid aDb$ $D \rightarrow bD \mid aC$			
		UNIT - IV			
6	a)	Design a Push Down Automata (PDA) to accept the language $L=\{a^n b^{2n} \mid n \geq 0\}$	<i>CO3</i>	<i>PO3</i>	08
	b)	Obtain CFG for the PDA: $P = (\{p,q\}, \{0,1\}, \{X,Z\}, \delta, q, Z)$ with the transitions $\delta(q, 1, Z) = \{(q, XZ)\}$ $\delta(q, 1, X) = \{(q, XX)\}$ $\delta(q, \epsilon, X) = \{(q, \epsilon)\}$ $\delta(q, 0, X) = \{(p, X)\}$ $\delta(p, 1, X) = \{(p, \epsilon)\}$ $\delta(p, 0, Z) = \{(q, Z)\}$	<i>CO3</i>	<i>PO3</i>	08
	c)	Elaborate on the instantaneous description of a PDA.	<i>CO2</i>	<i>PO2</i>	04
		UNIT - V			
7	a)	Determine a Turing Machine (TM) to represent the addition function of a unary number system.	<i>CO3</i>	<i>PO3</i>	08
	b)	Does Post Correspondence Problem with two lists $W = (b, bab^3, ba)$ and $X = (b^3, ba, a)$ have a solution?	<i>CO2</i>	<i>PO2</i>	06
	c)	Explain how TM can be combined to solve the complicated tasks.	<i>CO2</i>	<i>PO2</i>	06
