

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

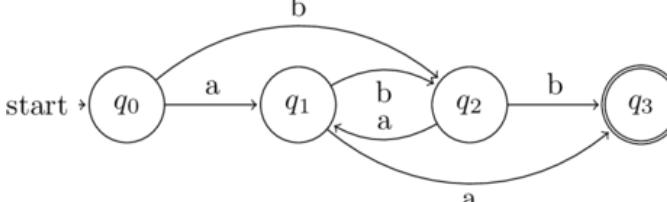
April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 23AM3AETFC

Course: Theoretical Foundations of Computations


Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																				
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define and design Deterministic Finite Automata (DFA) for the languages: i. $L = \{w(ba+ab) \mid w \in (a,b)^*\}$ ii. $L = \{w \mid N_a(w) \bmod 2 = 0 \text{ and } N_b(w) \bmod 2 = 0\}$ iii. To accept string of 0's and 1's having the substring 001. iv. To accept string of a's and b's having no more than three a's.	CO 2	PO 2	10																			
		b)	Convert the given Non-Deterministic Finite Automata (NFA) to its equivalent DFA and conclude your answer in the 5 -tuple format. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td><td>0</td><td>1</td></tr> <tr> <td>$\rightarrow q_0$</td><td>q_0, q_1</td><td>q_1</td></tr> <tr> <td>$*q_1$</td><td>q_2</td><td>q_2</td></tr> <tr> <td>q_2</td><td>Φ</td><td>q_2</td></tr> </table>		0	1	$\rightarrow q_0$	q_0, q_1	q_1	$*q_1$	q_2	q_2	q_2	Φ	q_2	CO 2	PO 2	10							
	0	1																							
$\rightarrow q_0$	q_0, q_1	q_1																							
$*q_1$	q_2	q_2																							
q_2	Φ	q_2																							
OR																									
	2	a)	Apply the relevant algorithm and minimize the DFA. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td><td>a</td><td>b</td></tr> <tr> <td>$\rightarrow q_0$</td><td>q_1</td><td>q_3</td></tr> <tr> <td>q_1</td><td>q_2</td><td>q_4</td></tr> <tr> <td>q_2</td><td>q_1</td><td>q_4</td></tr> <tr> <td>q_3</td><td>q_2</td><td>q_4</td></tr> <tr> <td>$*q_4$</td><td>q_4</td><td>q_4</td></tr> </table>		a	b	$\rightarrow q_0$	q_1	q_3	q_1	q_2	q_4	q_2	q_1	q_4	q_3	q_2	q_4	$*q_4$	q_4	q_4	CO 3	PO 2	08	
		a	b																						
$\rightarrow q_0$	q_1	q_3																							
q_1	q_2	q_4																							
q_2	q_1	q_4																							
q_3	q_2	q_4																							
$*q_4$	q_4	q_4																							
	b)	Given ϵ - NFA <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td><td>ϵ</td><td>a</td><td>B</td><td>c</td></tr> <tr> <td>$\rightarrow q_0$</td><td>q_1</td><td>q_0</td><td>Φ</td><td>ϕ</td></tr> <tr> <td>q_1</td><td>q_2</td><td>ϕ</td><td>q_1</td><td>ϕ</td></tr> <tr> <td>$*q_2$</td><td>ϕ</td><td>ϕ</td><td>Φ</td><td>q_2</td></tr> </table> a. Compute the ϵ closure of each state. b. Convert the automata to a DFA.		ϵ	a	B	c	$\rightarrow q_0$	q_1	q_0	Φ	ϕ	q_1	q_2	ϕ	q_1	ϕ	$*q_2$	ϕ	ϕ	Φ	q_2	CO 3	PO 3	08
	ϵ	a	B	c																					
$\rightarrow q_0$	q_1	q_0	Φ	ϕ																					
q_1	q_2	ϕ	q_1	ϕ																					
$*q_2$	ϕ	ϕ	Φ	q_2																					

	c)	Construct NFA to accept i. Strings containing 1100 or 1010 as a substring. ii. $L = \{w \mid w \in abab^n \text{ or } aba^n \text{ where } n \geq 0\}$	CO1	PO1	04
		UNIT - II			
3	a)	Convert the DFA to regular expression using state elimination method. 	CO1	PO1	8
	b)	Write regular expression to accept i) String of a's and b's of length ≤ 10 . ii) String of a's and b's whose length is either even or multiple of 3 or both. iii) $L = \{a^{2n}b^{2m} \mid n \geq 0, m \geq 0\}$	CO 2	PO 1	6
	c)	State pumping lemma theorem for regular languages and prove that $L = \{x \mid x \text{ contains an equal number of 0s and 1s}\}$ is not regular.	CO 2	PO 1	6
		UNIT - III			
4	a)	Show that the grammar is ambiguous for the string= “001101” $S \rightarrow 0B \mid 1A$ $A \rightarrow 0S \mid 1AA \mid 0$ $B \rightarrow 1S \mid 0BB \mid 1$	CO 2	PO 2	6
	b)	Simplify $S \rightarrow ABCa \mid bD$ $A \rightarrow BC \mid b$ $B \rightarrow b \mid \epsilon$ $C \rightarrow c \mid \epsilon$ $D \rightarrow d$	CO 2	PO 3	6
	c)	Convert the given Context Free Grammar (CFG) to Chomsky Normal Form (CNF). $S \rightarrow aAa \mid bBb \mid \epsilon$ $A \rightarrow C \mid a$ $B \rightarrow C \mid b$ $C \rightarrow CDE \mid \epsilon$ $D \rightarrow A \mid B \mid ab$	CO 3	PO1	8
		OR			
5	a)	Write Context Free Grammar (CFG) for the languages: i. $L = \{w \mid n_a(w) = n_b(w)\}$ ii. $L = \{ww^r \text{ where } w \in (a,b)^*\}$ iii. String consisting of any number of a's and b's with atleast one a. iv. $L = \{a^n b^m \mid n \geq 0, m > n\}$	CO3	PO1	8
	b)	Provide the formal description of CFG. Outline the steps to prove a language is not context free.	CO2	PO1	7

	c)	<p>Identify the language represented by</p> <p>i) $S \rightarrow 0S1 \mid A \mid B$ $A \rightarrow 0A \mid 0$ $B \rightarrow 1B \mid 1$</p> <p>ii) $S \rightarrow aSa \mid bSb \mid A$ $A \rightarrow aBb \mid bBa$ $B \rightarrow aB \mid bB \mid \epsilon$</p>	<i>CO3</i>	<i>PO2</i>	5
		UNIT - IV			
6	a)	Construct a PDA for the language $L = \{wCw^r \mid w \in (a+b)^*\}$. Verify whether the given string aabCbaa is accepted or not.	<i>CO3</i>	<i>PO2</i>	10
	b)	<p>Convert the given CFG to PDA.</p> <p>$S \rightarrow aAB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid A$ $C \rightarrow a$</p>	<i>CO3</i>	<i>PO3</i>	10
		UNIT - V			
7	a)	Design a Turing Machine (TM) to accept the language $L = \{0^n1^n, n \geq 1\}$. Are the strings 000111 and 001111 accepted by the TM? Justify.	<i>CO3</i>	<i>PO1</i>	10
	b)	Elaborate on i. Universal Turing Machines ii. Undecidable problems	<i>CO3</i>	<i>PO1</i>	5
	c)	State Post Correspondence Problem (PCP). Determine whether the lists $M = (abb, aa, aaa)$ and $N = (bba, aaa, aa)$ has a Post Correspondence Solution or not.	<i>CO3</i>	<i>PO3</i>	5
