

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B E

Branch: Artificial Intelligence and Machine Learning

Course Code: 20AM4PCDAA

Course: Design and Analysis of Algorithms

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Discuss the Worst case, Best case and average case time complexity of an algorithm with an example. **8**

b) Solve the following recurrence relation using backward substitution method **6**

- i. $x(n)= x(n/2)+n$ for $n>1$, $x(1)=1$
- ii. $x(n)=x(n-1)+5$ for $n>1$ and $x(0)=0$

c) Differentiate among O-notation, Ω -notation and θ -notation **6**

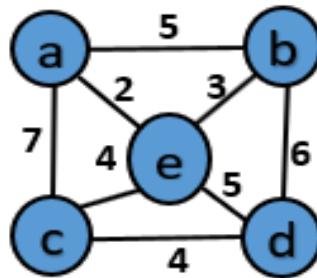
UNIT - II

2 a) Apply Exhaustive Search technique to solve the Knapsack problem for the following instance: Number of objects $N=4$, weights = $\{10,20,16,24\}$ and profits = $\{85,40,35,30\}$ with the capacity of Knapsack $M=50$. **6**

b) Apply Quick sort technique to sort the following set of integers. Also, write Quick sort algorithm to sort an array and find its time complexity in worst case **8**

60, 50, 25, 10, 35, 25, 75, 30, 85

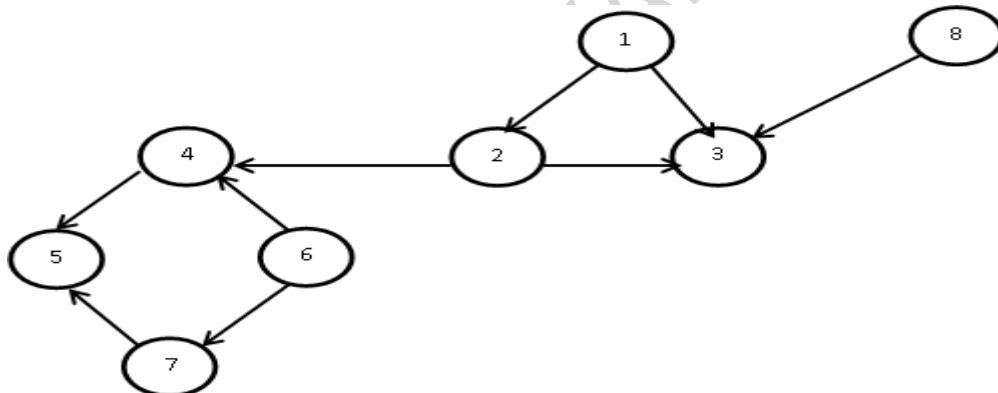
c) Explain Spanning tree and Minimum Spanning tree with an example for each. **6**


OR

3 a) Apply Merge sort technique to sort the following set of integers. Also, write Merge sort algorithm to sort an array and find its time complexity in worst case **8**

38, 27, 43, 3, 9, 82, 10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.


b) Write Kruskal's algorithm and find the minimum spanning tree for the following graph. 8

c) Write an algorithm to sort an array by selection sort technique 4

UNIT - III

4 a) Apply Decrease and Conquer technique to find Topological order for the following graph using DFS method with the source vertex '1' and write an algorithm for the same. 8

b) Generate permutations for the following set using Johnson Trotter method 6
 $\{1,2,3,4\}$

c) Construct a shift table and find whether pattern string is present in the text string using Horspool string matching algorithm 6

Text: JIMY_HAILED_THE_LEADER_TO_STOP

Pattern: LEADER

OR

5 a) Differentiate between DFS and BFS tree traversals. 6

b) Write an algorithm to find topological order for a graph using DFS method. 6

c) Differentiate between linear probing and quadratic probing with an example. Consider the hash table with the current status and hash key=Key % 11. Explain the situation when a key element 87 is inserted and which position it will be inserted in the below hash table 8

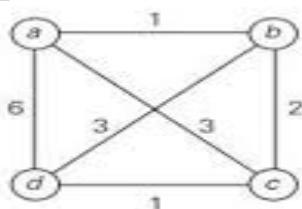
Index	Value
0	43
1	
2	46
3	25
4	36
5	
6	
7	18
8	29
9	
10	10

UNIT - V

6 a) Create a max heap tree for the following list of elements. Show step-by-step construction of tree and sorting of the elements. **6**

55, 28, 35, 78, 110, 48, 88

b) Write an algorithm to determine the mode using the concept of presorting and analyze its time complexity. **6**


c) Compute binomial co-efficient for $n=5$ and $k=4$ using dynamic programming. **8**
Also, develop an algorithm and write its time complexities.

OR

7 a) Distinguish between P, NP and NP completeness problem **6**

b) Apply backtracking approach to write state space tree to find sum of subsets for set $S=\{5, 5, 10\}$ and $d=10$ **6**

c) Apply branch and bound technique to solve the travelling salesman problem for the below graph. **8**
