

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

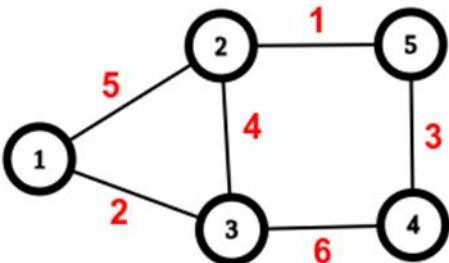
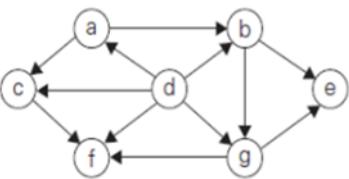
February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.



Course Code: 22AM4PCDAA

Max Marks: 100

Course: Design and Analysis of algorithm

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			1	a)	Define an algorithm. Explain the framework for analyzing the efficiency of an algorithm with an example.			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.				b)	Perform a mathematical analysis of a non-recursive algorithm (e.g., Linear Search) to derive its time complexity.	CO1	PO2	5
				c)	Differentiate between Big-O, Omega - Ω , and Theta- Θ notations. Provide examples to illustrate their use.	CO1	PO2	10
	OR							
	2	a)	Analyze the asymptotic notations used for best case, average case and worst-case analysis of algorithms and write an algorithm for finding maximum element of an array perform best, worst and average case complexity with appropriate order notations.			CO1	PO2	10
		b)	Discuss in detail about fundamentals of algorithmic problem solving			CO1	PO2	10
	UNIT - II							
	3	a)	Illustrate Merge sort algorithm and discuss its time complexity with suitable example.			CO2	PO2	10
		b)	State the master theorem with its cases. For each of the following recurrences, give an expression for the runtime T (n) if the recurrence can be solved with the Master Theorem. Otherwise, indicate that the Master Theorem does not apply.			CO2	PO2	10
			1. $T(n) = 3T(n/2) + n^2$ 2. $T(n) = 4T(n/2) + n^2$ 3. $T(n) = T(n/2) + 2n$ 4. $T(n) = 2nT(n/2) + n^n$ 5. $T(n) = 16T(n/4) + n$ 6. $T(n) = 2T(n/2) + n \log n$					

		OR			
4	a)	What Is a Minimum Spanning Tree? Find the Minimum Spanning Tree for the given graph.	CO1	PO2	10
	b)	Illustrate the Quick sort algorithm with suitable example.	CO1	PO2	10
	UNIT - III				
5	a)	Define topological sorting. Apply the source-removal algorithm to solve the topological sorting problem for the following digraph:	CO1	PO2	10
	b)	Write Horspool Algorithm for String matching. Trace the algorithm to find the pattern "BARBER" in the text "JIM_SAW_ME_IN_A_BARBER"	CO1	PO2	10
	OR				
6	a)	Maze can be modeled by having a vertex for a starting point, a finishing point, dead ends, and all the points in the maze where more than one path can be taken, and then connecting the vertices according to the paths in the maze.	CO1	PO2	10
	a.	Construct such a graph for the following maze.			
	b.	Which traversal—DFS or BFS helps in reaching the destination from source and why?			
	c.	Try in imitating the steps followed as an algorithm for the traversal.			

	b)	Apply the DFS-based algorithm to solve the topological sorting problem for the following digraphs.	CO2	PO2	10
		UNIT - IV			
7	a)	Explain Heapsort and demonstrate how a heap is constructed for sorting a list of numbers.	CO2	PO2	10
	b)	Discuss and derive an equation for solving the 0/1 Knapsack problem using dynamic programming method. Design and analyze the algorithm for the same	CO2	PO2	10
		OR			
8	a)	Apply Warshall's algorithm to find the transitive closure of the digraph defined by the following adjacency matrix. i. Prove that the time efficiency of warshall's algorithm is cubic. $\begin{matrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{matrix}$ ii. Explain why the time efficiency of warshall's algorithm is inferior to that of the traversal-based algorithm for sparse graphs represented by their adjacency lists.	CO3	PO2	10
	c)	Explain Floyd's Algorithm for finding shortest paths between all pairs of vertices in a graph with an example.	CO3	PO2	10
		UNIT - V			
9	a)	Explain Backtracking Method. What is N-Queens Problem? Give solution of 4- Queens Problem using Backtracking Method.	CO3	PO2	10
	b)	Define Decision Trees. Explain their role in analyzing algorithm complexity with an example.	CO3	PO2	05
	c)	What is P, NP, and NP-Complete Problems ? Provide examples and explain their significance.	CO3	PO2	05
		OR			
10	a)	Explain the concept of NP-completeness. Why is the Traveling Salesman Problem (TSP) considered NP-complete	CO3	PO2	05
	b)	i. Apply backtracking to solve the following instance of the subset sum problem: $A = \{3, 5, 6, 7\}$ and $d = 15$ ii. Will the backtracking algorithm work correctly if we use just one of the two inequalities to terminate a node as nonpromising?	CO3	PO2	10

		c)	Compare polynomial-time algorithms and non-deterministic polynomial-time algorithms with examples.	CO3	PO2	05
--	--	----	--	-----	-----	-----------

B.M.S.C.E. - ODD SEM 2024-25