

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 22AM4PCDAA

Course: Design and Analysis of Algorithms

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Differentiate asymptotic notations diagrammatically with the suitable mathematical representation for each.	CO1	PO1	10
	b)	Write a recursive algorithm to compute factorial of a given number. Set up and solve recurrence relation for the same to find its time complexity.	CO 1	PO 2	10
		UNIT - II			
2	a)	Apply quicksort to sort the list E, X, A, M, P, L, E in alphabetical order. Draw recursive call tree. Quick sort is stable or not, justify your answer.	CO 3	PO 3	10
	b)	Write single source shortest path algorithm.	CO 3	PO 3	10
		OR			
3	a)	Write an algorithm to demonstrate the working of Kruskal's algorithm. Depict the same with a suitable example.	CO 3	PO 3	10
	b)	Write an algorithm and derive best, worst, and average case efficiencies for brute force string matching. Determine the number of character comparisons made by the brute-force algorithm in searching for the pattern GANDHI in the text. THERE_IS_MORE_TO_LIFE_THAN_INCREASING_ITS_SPEED. Assume that the length of the text is 47 characters long and is known before the search starts.	CO 3	PO 2	10
		UNIT - III			
4	a)	i. Define Decrease and conquer technique. Explain the general plan based on which the Decrease and conquer works with the help of diagrammatic representation. ii. Demonstrate BFS and DFS traversals starting from vertex 0 for the network given below:	CO 3	PO 2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Apply topological sorting algorithm to the following graph and find all possible topological orderings.	CO 3	PO 2 10
		OR		
5	a)	Apply Decrease and Conquer strategy and write an algorithm to check whether a graph is connected or not using DFS method. Give an example.	CO 3	PO 2 10
	b)	Write Horspool Algorithm for String matching. Trace the algorithm to find the pattern “ELECTION” in the text. <u>“EDUCATION ONLY HELPS IN SELECTION”</u>	CO 3	PO 3 10
		UNIT – IV		
6	a)	Discuss the working principle of 2-3 Tree and Construct a 2-3 tree for the following elements: 3, 1, 4, 5, 9, 2, 6, 8, 7.	CO 3	PO 3 10
	b)	Consider the following weights and profits, apply 0/1 Knapsack problem by considering the knapsack capacity as 8 Kgs, Weights: {3, 4, 6, 5}, Profits: {2, 3, 1, 4}.	CO 3	PO 2 10
		UNIT – V		
7	a)	Solve the travelling salesmen problem for the graph given below by applying the branch bound technique with help of state space tree.	CO 3	PO 3 12
	b)	Discuss the following terms in detail i. P – Class. ii. NP hard – Class. iii. NP Complete Class.	CO 2	PO 1 8