

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 22AM4PCDAA

Max Marks: 100

Course: Design and Analysis of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	List and explain the important characteristics that every algorithm must possess.						
		b)	Explain the general steps involved in algorithmic problem solving with a suitable example						
		c)	Explain the general plan for analyzing the efficiency of a non-recursive algorithm. suggest a non-recursive algorithm to find factorial of number and derive its efficiency.						
	OR								
	2	a)	Define algorithm. Explain asymptotic notations Big-Oh, Big-Omega and Big-Theta notations						
		b)	Explain the general plan for analyzing the efficiency of a recursive algorithm. Provide a recursive algorithm to find factorial of number and derive its efficiency.						
		c)	Write a recursive algorithm to find the factorial of a given number. Also compute the time complexity.						
	UNIT - II								
	3	a)	Explain the concept of divide and conquer. Design an algorithm for merge sort and derive its time complexity						
		b)	Design a Bubble sort algorithm and obtain its time complexity. Also sort the elements 25,75,40,10,20,18 using Bubble sort.						
	OR								
	4	a)	Design an algorithm for quick sort, also sort the elements 25,75,40,10,20,05,15 using quick sort algorithm.						
		b)	Given a weighted undirected graph, apply Dijkstra's algorithm for the given graph with source vertex 0 as shown in figure 4.						

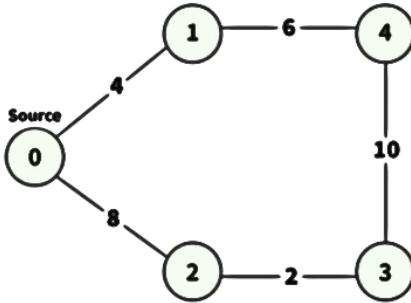


Figure 4

UNIT - III

5 a) Design an algorithm to traverse a graph using Depth First Search (DFS). Apply DFS for the graph given below.

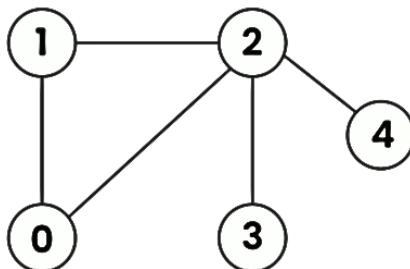


Figure 5

CO2 PO3 **10**

b) Given the text $T = \text{"abacaababcabacabaabb"}$ and the pattern $P = \text{"abacab"}$, perform one iteration of the Horspool algorithm and show the shift table and matching process clearly.

CO2 PO3 **05**

c) What is Topological Sorting? State the conditions under which it can be applied. Explain the importance of topological sorting in real-world applications such as task scheduling and course prerequisite planning.

CO1 PO1 **05**

OR

6 a) Given a undirected graph represented by an adjacency list adj , where each $\text{adj}[i]$ represents the list of vertices connected to vertex i . Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list containing the BFS traversal of the graph shown in figure 6.

CO2 PO3 **10**

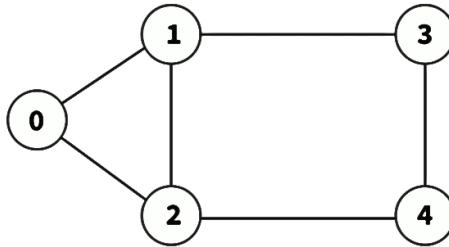


Figure 6

b) Given the keys: 42, 23, 34, 52, 46, 33, insert them into a hash table of size 7 using modulo division method and linear probing to resolve collisions. Show the final hash table.

c) List and explain at least two real-world applications each of Depth First Search (DFS) and Breadth First Search (BFS).

UNIT - IV

7 a) Define heap. Explain the properties of heap along with its representation.

b) Define transitive closure of a graph. Apply Floyd's algorithm to compute transitive closure of a directed graph of figure 7

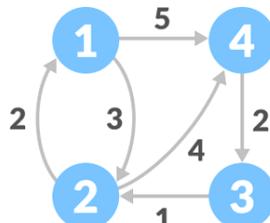


Figure 7

c) What is a 2-3 tree? Explain the properties of 2-3 trees.

OR

8 a) Solve the given instance of 0/1 Knapsack problem using Branch and Bound technique. Given: Knapsack Capacity (m)=15.

Item	1	2	3	4	5	6	7
Profit	10	5	15	7	6	18	3
Weight	2	3	5	7	1	4	1

b) Explain Dynamic programming. Write an algorithm to compute binomial coefficient.

c) Provide an algorithm for presorting with an example.

UNIT - V

9 a) Explain the following with an example:

- (i) P Class
- (ii) NP Class
- (iii) NP Complete Problem
- (iv) NP Hard Problem.

	b)	Apply the Branch and Bound algorithm to solve the travelling salesperson problem for the given graph shown in figure 9.	CO2	PO3	10
		OR			
10	a)	Write an algorithm for N-Queen's and solve the $4 * 4$ Problem using the Backtracking approach.	CO2	PO3	10
	b)	Apply Backtracking technique to solve the Sum of Subset Problem for the instance (sum of total weights) $m = 30$ and $S = \{5, 10, 12, 13, 15, 18\}$.	CO2	PO3	10

B.M.S.C.E. - EVEN SEMESTER 2024/25