

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

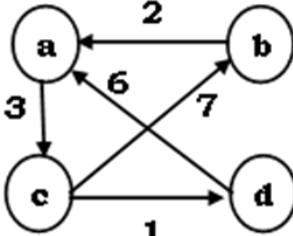
Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 22AM4PCDAA

Course: Design and Analysis of Algorithms

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Write an algorithm to compute $n!$ recursively. Set up a recurrence relation for the algorithm's basic count and solve it.					
		b)	Prove the following theorem of asymptotic notations: If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$ then $t_1(n) + t_2(n) \in O(\max(g_1(n), g_2(n)))$			CO1	PO1	6
		c)	Define an algorithm? Explain the Characteristics of an algorithm. Illustrate the fundamentals of problem solving using an algorithm.					
			UNIT - II					
	2	a)	Write the Brute force string matching algorithm. Apply Brute string-matching algorithm for the following string and pattern. Analyze its time complexity. NOBODY NOTICED HIM String to be searched: NOT			CO3	PO1	4
		b)	Write Quick sort algorithm. Find the time complexity of the same. Sort the following numbers using Quick sort. 5 3 1 9 8 2 4 7					
		c)	Illustrate Merge sort algorithm and discuss its time complexity. Apply Merge sort to sort the following list in ascending order. 8 3 2 9 7 1 5 4			CO3	PO1	8
			OR					
	3	a)	Find the minimum spanning tree and its cost using Prim's algorithm for the following graph. Reproduce the steps followed as an algorithm and analyze its complexity.			CO3	PO1	10
			<pre> graph LR a((a)) --- b((b)) a --- c((c)) b --- d((d)) b --- c d --- e((e)) d --- f((f)) c --- f e --- f edge[3] ab edge[1] ac edge[6] bd edge[1] bc edge[2] cf edge[3] de edge[8] df edge[5] ef </pre>					

	b)	<p>Write single source shortest path algorithm. Find the shortest path to all nodes from node 'a' in the following graph.</p>	CO3 PO1 PO2	10
		UNIT - III		
4	a)	<p>Write Depth First Search algorithm. Find the DFS path for the following graph.</p>	CO3 PO1 PO2	6
	b)	<p>Apply DFS and Source removal methods of Topological sorting on following graph.</p>	CO3 PO1 PO2	8
	c)	<p>Generate all permutations of {1,2,3,4} by Bottom up minimal change algorithm and Johnson Trotter algorithm.</p>	CO3 PO1 PO2	6
		OR		
5	a)	<p>Write Breadth First Search algorithm. Find the BFS path for the following graph.</p>	CO3 PO1 PO2	6
	b)	<p>Construct the shift table and apply horspool string matching algorithm to find the pattern "BARBER" in the string: JIM_SAW_ME_IN_A_BARBERSHOP</p>	CO3 PO1 PO2	6
	c)	<p>Illustrate Open hashing and closed hashing with an example for each.</p>	CO3 PO1 PO2	8
		UNIT - IV		
6	a)	<p>Apply heapsort for the list of elements 82, 90, 10, 12, 15, 77, 55, 23 using bottom up approach. Provide tree representation of each step.</p>	CO3 PO1 PO2	7

	b)	Apply Floyd's algorithm to compute all pairs shortest paths for the following graph.	CO3 PO1 PO2	7
	c)		CO3 PO1 PO2	6
UNIT - V				
7	a)	Find possible solutions for 4 Queen's problem using backtracking technique. Construct the state space tree for the same.	CO3 PO1 PO2	7
	b)	By constructing state space tree find all possible subsets of set $S = \{3,5,6,7\}$ whose sum $d=15$.	CO3 PO1 PO2	7
	c)	Write a note on NP Complete, NP and P class problem.	CO2 PO1 PO2	6