

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM4PCDAA

Max Marks: 100

Course: Design and Analysis of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain Asymptotic notations with suitable examples.	<i>CO1</i>	<i>PO1</i>	10
	b)	Give the mathematical analysis of Non-recursive Matrix multiplication algorithm	<i>CO1</i>	<i>PO1</i>	4
	c)	Illustrate the steps involved in algorithm design and analysis process with a neat flowchart.	<i>CO1</i>	<i>PO1</i>	6
OR					
2	a)	Describe the various characteristics of an algorithm.	<i>CO1</i>	<i>PO1</i>	5
	b)	Provide the general plan for analyzing Time efficiency of Recursive algorithms and analyze the Tower of Hanoi Recursive algorithm.	<i>CO1</i>	<i>PO2</i>	10
	c)	Elaborate on the general plan for analyzing the time efficiency of recursive algorithm.	<i>CO1</i>	<i>PO1</i>	5
UNIT - II					
3	a)	Apply Quick sort algorithm to sort the array 20, 2, 9, 7, 12, 15, 1, 6, 8.	<i>CO2</i>	<i>PO2</i>	5
	b)	Sort the given array 21, 10, 7, 15, 12, 19, 2, 5 using Merge sort algorithm.	<i>CO2</i>	<i>PO2</i>	5
	c)	i. Write the Prim's algorithm. Give an example. ii. Apply Kruskal's algorithm to find minimal Spanning tree for the graph shown in Figure 3c.	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

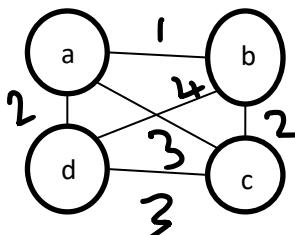
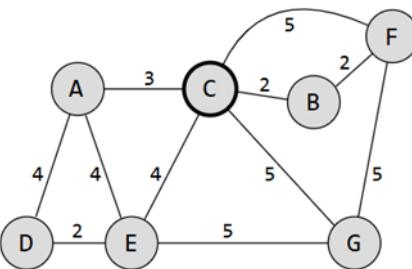
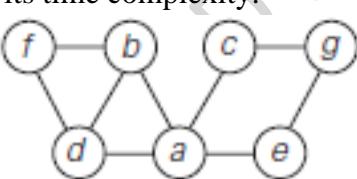
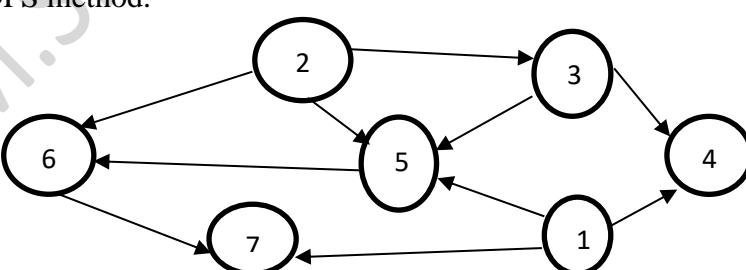





Figure 3c

OR					
4	a)	Solve the recurrence relation $T(n) = 2T(n/2) + cn$ using master theorem.	CO2	PO1	6
	b)	Using Dijkstra's algorithm find the shortest paths from vertex C in the given graph shown in Figure 4b.	CO2	PO2	10
		Figure 4b			
	c)	Highlight the various applications of Minimum Spanning Tree (MST).	CO2	PO1	4
UNIT - III					
5	a)	i. List various applications of Breadth First Search (BFS) and Depth First Search (DFS). ii. Apply Breadth First Search (BFS) for the graph shown in Figure 5a and provide its time complexity.	CO2	PO2	10
		Figure 5a			
	b)	Obtain the Topological sort for the graph shown in Figure 5b using the following: i) Source removal method ii) DFS method.	CO2	PO2	10
		Figure 5b			
OR					
6	a)	i. Write Horspool algorithm. ii. Identify the pattern in a string using Horspool algorithm. String: G T A C T A G A G G A C G T A T G T A C T G Pattern: A T G T A	CO2	PO2	10
	b)	Illustrate Permutation algorithms for generating Combinatorial objects with appropriate example.	CO2	PO2	5

	c)	Describe any two collision resolution techniques in hashing.	CO1	PO1	5																									
		UNIT - IV																												
7	a)	i. Outline the properties of 2-3 tree. ii. Construct a 2-3 tree by successive insertion for the following list: 6, 5, 1, 9, 7, 8, 10.	CO2	PO2	10																									
	b)	i. Write Heapsort algorithm. Also give an example. ii. Apply heapsort for the given set of nodes elements 4, 3, 7, 1, 8, 5 using Bottom-up approach.	CO2	PO2	10																									
		OR																												
8	a)	Apply Floyd's algorithm to find all pairs shortest path for the given adjacency matrix shown in Table 8a.	CO3	PO2	10																									
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td></td><td>C1</td><td>C2</td><td>C3</td><td>C4</td></tr> <tr><td>R1</td><td>0</td><td>3</td><td>∞</td><td>7</td></tr> <tr><td>R2</td><td>8</td><td>0</td><td>2</td><td>∞</td></tr> <tr><td>R3</td><td>5</td><td>∞</td><td>0</td><td>1</td></tr> <tr><td>R4</td><td>2</td><td>∞</td><td>∞</td><td>0</td></tr> </table>		C1	C2	C3	C4	R1	0	3	∞	7	R2	8	0	2	∞	R3	5	∞	0	1	R4	2	∞	∞	0			
	C1	C2	C3	C4																										
R1	0	3	∞	7																										
R2	8	0	2	∞																										
R3	5	∞	0	1																										
R4	2	∞	∞	0																										
		Table 8a																												
	b)	Apply Dynamic programming technique to the following instance of the Knapsack problem with Knapsack capacity M =10. Also indicate each step used in computing the same.	CO3	PO2	10																									
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>Item</td><td>Weight</td><td>Value</td></tr> <tr><td>1</td><td>7</td><td>42</td></tr> <tr><td>2</td><td>3</td><td>12</td></tr> <tr><td>3</td><td>4</td><td>40</td></tr> <tr><td>4</td><td>5</td><td>25</td></tr> </table>	Item	Weight	Value	1	7	42	2	3	12	3	4	40	4	5	25													
Item	Weight	Value																												
1	7	42																												
2	3	12																												
3	4	40																												
4	5	25																												
		UNIT - V																												
9	a)	Using the Branch and Bound algorithm, solve the Travelling Salesman Problem (TSP) for the graph shown in Figure 9a.	CO3	PO2	10																									
		Figure 9a																												
	b)	Apply Branch and Bound approach to solve the instance of 0/1 Knapsack problem. Knapsack capacity M=10. Also write the steps associated with it.	CO3	PO2	10																									
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>Items</td><td>1</td><td>2</td><td>3</td><td>4</td></tr> <tr><td>Weight</td><td>4</td><td>7</td><td>5</td><td>3</td></tr> <tr><td>Value</td><td>\$40</td><td>\$42</td><td>\$25</td><td>\$12</td></tr> </table>	Items	1	2	3	4	Weight	4	7	5	3	Value	\$40	\$42	\$25	\$12													
Items	1	2	3	4																										
Weight	4	7	5	3																										
Value	\$40	\$42	\$25	\$12																										

			OR																												
	10	a)	Obtain the optimal solution for assignment problem given below:	<i>CO3</i>	<i>PO2</i>	10																									
			<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th></th> <th>Job 1</th> <th>Job 2</th> <th>Job 3</th> <th>Job 4</th> </tr> </thead> <tbody> <tr> <td>Person 1(A)</td> <td>11</td> <td>4</td> <td>9</td> <td>10</td> </tr> <tr> <td>Person 2(B)</td> <td>8</td> <td>6</td> <td>5</td> <td>9</td> </tr> <tr> <td>Person 3(C)</td> <td>7</td> <td>10</td> <td>3</td> <td>10</td> </tr> <tr> <td>Person 4(D)</td> <td>9</td> <td>8</td> <td>11</td> <td>6</td> </tr> </tbody> </table>		Job 1	Job 2	Job 3	Job 4	Person 1(A)	11	4	9	10	Person 2(B)	8	6	5	9	Person 3(C)	7	10	3	10	Person 4(D)	9	8	11	6			
	Job 1	Job 2	Job 3	Job 4																											
Person 1(A)	11	4	9	10																											
Person 2(B)	8	6	5	9																											
Person 3(C)	7	10	3	10																											
Person 4(D)	9	8	11	6																											
		b)	Explain the concept of sum of subset with suitable example.	<i>CO3</i>	<i>PO1</i>	5																									
		c)	Comprehend on N queens problem with relevant example.	<i>CO3</i>	<i>PO1</i>	5																									

B.M.S.C.E. - ODD SEM 2024-25