

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM4PCDAA

Max Marks: 100

Course: Design and Analysis of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define an algorithm. Illustrate the process of an algorithm design and analysis with a neat flowchart.	CO1	PO1	8
		b)	Construct an algorithm to find the maximum element among n elements and analyze its time complexity using mathematical methods	CO2	PO2	7
		c)	Determine the frequency count of operations for the following algorithm: Algorithm Sum (A, n) { S=0; for (i=0; i<n; i++){ S = S+A[i]; } return S; }	CO2	PO2	5
OR						
	2	a)	Outline the general approach for analyzing the time efficiency of recursive algorithms. Apply this approach to the Tower of Hanoi algorithm and determine its time complexity.	CO2	PO2	10
		b)	Graphically illustrate the different types of asymptotic notations with suitable examples.	CO2	PO1	6
		c)	Describe the key characteristics of an algorithm.	CO1	PO1	4
UNIT - II						
3	a)	Formulate the Selection Sort algorithm to sort the array [45, 12, 89, 33, 22, 78, 56] in an ascending order, and analyze its time complexity using mathematical analysis.	CO2	PO2	8	

	b)	Determine the optimal set of edges to connect all nodes in the graph shown in the Figure 3b. Specify Minimum Spanning Tree (MST) using Kruskal's algorithm.	CO1	PO2	6
	c)	Apply the Merge Sort algorithm to sort the following array in ascending order: [38, 12, 27, 43, 3, 9, 82]. Show the steps involved and analyze the time complexity of an algorithm.	CO1	PO2	6
		OR			
4	a)	Write an algorithm for string matching using the Brute Force technique and use it to find a specified pattern within a given text. Text: Banana is a Plant Pattern: Plant	CO1	PO1	7
	b)	Use Prim's algorithm on the given graph shown in Figure 4b to find the minimum spanning tree.	CO1	PO2	7
	c)	Sort the following array elements in ascending order [29, 10, 14, 37, 13] using Quick Sort algorithm.	CO1	PO1	6
		UNIT - III			
5	a)	Apply the Breadth-First Search (BFS) traversal on the graph shown in Figure 5a, starting from vertex A.	CO1	PO2	7
	b)	Analyze the algorithm for generating combinational objects and print all permutations for the given string ABCD.	CO1	PO1	7

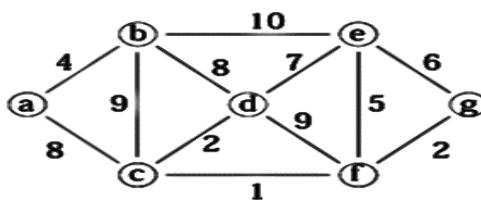


Figure 3b

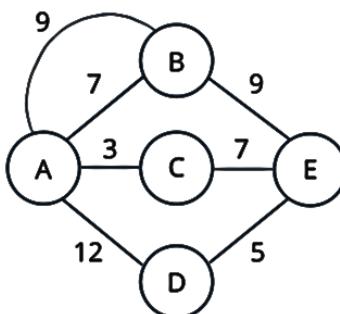


Figure 4b

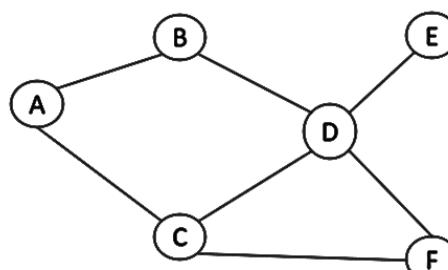
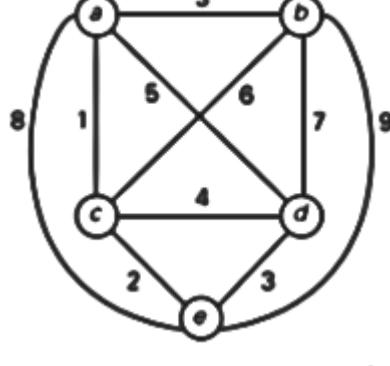



Figure 5a

	c)	Given a list of keys: [18, 41, 22, 44, 59, 32, 31, 73], insert them into a hash table of size 7 using the division method ($k \bmod n$). Resolve any collisions using linear probing.	CO1	PO1	6
		OR			
6	a)	Perform Depth-First Search (DFS) traversal on the graph shown in Figure 6a beginning from vertex 0.	CO1	PO2	7
		Figure 6a			
	b)	Apply the Horspool string matching algorithm to find the occurrences of a given pattern in the provided text. Illustrate the steps involved in the matching process. Text: "HERE IS A SIMPLE EXAMPLE" Pattern: "SIMPLE"	CO1	PO2	8
	c)	Given a set of Keys: 123456, 987654, 456789, 321654, apply the folding method to generate hash values and insert them into a hash table of size: 1000.	CO1	PO1	5
		UNIT - IV			
7	a)	Describe the process of insertion in 2- 3 tree and construct a 2-3 tree for the string COMPUTER.	CO1	PO1	8
	b)	Compute Floyd's algorithm to determine the shortest paths in a weighted graph shown in Figure 7b:	CO1	PO2	8
		Figure 7b			
	c)	Explain how the presorting technique can be applied to simplify any problem?	CO1	PO1	4
		OR			
8	a)	Apply Heapsort for the given set of node elements 2, 7, 6, 5, 10, 8, 3 using Bottom-Up approach.	CO1	PO2	7
	b)	Elaborate the concept of Binomial Coefficient algorithm with suitable example.	CO1	PO1	5
	c)	Apply the Bottom-Up dynamic programming algorithm in the following instance of the Knapsack problem, Knapsack capacity M =10.	CO1	PO2	8

			Item	Weight	Value																											
			1	7	42																											
			2	3	12																											
			3	4	40																											
			4	5	25																											
			UNIT - V																													
9	a)	Utilize the Branch and Bound algorithm to solve the Travelling Salesman Problem (TSP) for the provided graph shown in Figure 9a.	<i>CO1</i>	<i>PO2</i>	10																											
		Figure 9a																														
	b)	Construct a Decision Tree to establish lower bounds on the efficiency for the tree-element selection sort using the elements 1,2,3.	<i>CO1</i>	<i>PO2</i>	5																											
	c)	Differentiate between Backtracking and Branch and Bound Technique.	<i>CO1</i>	<i>PO1</i>	5																											
		OR																														
10	a)	Compute the following Assignment problem using Branch and Bound technique provided in Table 10a. to obtain the optimal allocation.	<i>CO1</i>	<i>PO2</i>	10																											
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th></th> <th>Job 1</th> <th>Job 2</th> <th>Job 3</th> <th>Job 4</th> </tr> </thead> <tbody> <tr> <td>A</td> <td>9</td> <td>2</td> <td>7</td> <td>8</td> </tr> <tr> <td>B</td> <td>6</td> <td>4</td> <td>3</td> <td>7</td> </tr> <tr> <td>C</td> <td>5</td> <td>8</td> <td>1</td> <td>8</td> </tr> <tr> <td>D</td> <td>7</td> <td>6</td> <td>9</td> <td>4</td> </tr> </tbody> </table>		Job 1	Job 2	Job 3	Job 4	A	9	2	7	8	B	6	4	3	7	C	5	8	1	8	D	7	6	9	4					
	Job 1	Job 2	Job 3	Job 4																												
A	9	2	7	8																												
B	6	4	3	7																												
C	5	8	1	8																												
D	7	6	9	4																												
		Table 10a																														
	b)	Explain the following computational complexity classes: i. P Class ii. NP Class iii. NP-Hard Class iv. NP-Complete Class	<i>CO1</i>	<i>PO2</i>	6																											
	c)	Solve the N Queen's problem for 4*4 Chessboard using Backtracking.	<i>CO1</i>	<i>PO1</i>	4																											
