

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

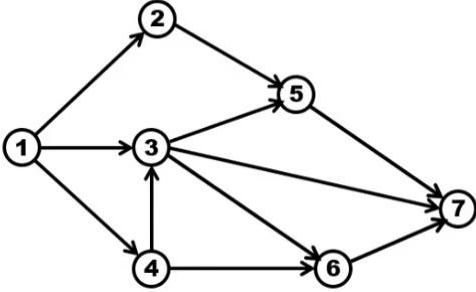
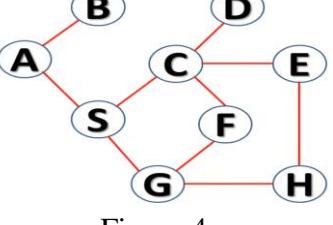
Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM4PCDAA



Max Marks: 100

Course: Design and Analysis of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks									
1	a)	Illustrate the steps involved in algorithm design and analysis process with a neat flowchart.	1	2	6									
	b)	i. Explain the general steps for analyzing the efficiency of a recursive algorithm. ii. Develop an algorithm to find a factorial of a given number using recursive procedure and derive its efficiency.	2	3	8									
	c)	Write an algorithm to find uniqueness of elements in an array and give the mathematical analysis of this using non recursive algorithm with steps.	1	2	6									
UNIT - II														
2	a)	Write and illustrate the working of the quicksort algorithm. Apply the quicksort technique to sort the following array elements: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>54</td> <td>26</td> <td>93</td> <td>17</td> <td>77</td> <td>31</td> <td>44</td> <td>55</td> <td>20</td> </tr> </table>	54	26	93	17	77	31	44	55	20	1	3	10
54	26	93	17	77	31	44	55	20						
	b)	List the steps involved in Prim's algorithm. Consider the following graph depicted in Figure 2b, find the minimum spanning tree using Prim's algorithm:	2	3	10									
 Figure 2b														

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT – III					
3	a)	<p>i. Differentiate between Breadth First Search (BFS) and Depth First Search (DFS).</p> <p>ii. Define Topological sorting. Illustrate the Topological sorting using single source removal method for the following graph shown in Figure 3a:</p>	1	2	10
		<p style="text-align: center;">Figure 3a</p>			
	b)	<p>i. Define Hashing. Describe any two collision resolution techniques.</p> <p>ii. Apply linear probing technique for the keys 1, 3, 12, 4, 25, 6, 18, 20 and 8 are inserted into empty hash table of length 10 using open addressing with hash function $H(i) = i^2 \bmod 10$. Write the resultant hash table and find maximum probe value.</p>	3	3	10
OR					
4	a)	<p>Write Breadth First Search (BFS) algorithm and apply the same for the given graph shown in Figure 4a. Also mention the shortest path from the source node A.</p>	1	2	10
		<p style="text-align: center;">Figure 4a</p>			
	b)	<p>i. Design and explain Horspool's algorithm for enhancement of string matching in detail.</p> <p>ii. Apply Horspool's algorithm to find the pattern: A T G T A in the string: G T A C T A G A G G A C G T A T G T A C T G.</p>	3	3	10
UNIT – IV					
5	a)	<p>i. Describe the three major variations of Transform and Conquer technique.</p> <p>ii. Construct a 2-3 tree by successive insertion for the following list: 9, 5, 8, 3, 2, 4, 7.</p>	3	3	10
	b)	<p>Develop an algorithm to solve Knapsack problem using Greedy approach and apply the same to find optimal solution to the knapsack instance: $n = 4$, $m = 8$, $P = \{1, 2, 5, 6\}$ and $W = \{2, 3, 4, 5\}$.</p>	3	3	10

OR

6 a) Apply Floyd's algorithm to find all pairs shortest path for the following graph indicated in Figure 6a.

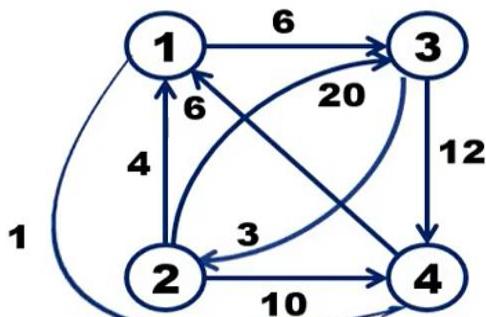


Figure 6a

6 b) Illustrate the following with an example. Also mention any two applications of these techniques.
 i. Presorting
 ii. Binomial Co-efficient.

UNIT - V

7 a) Solve the following assignment problem using Branch and Bound technique to find optimal solution. Also explain a step by step solving procedure for the same.

	Job1	Job2	Job3	Job4
Person A	9	2	7	8
Person B	6	4	3	7
Person C	5	8	1	8
Person D	7	6	9	4

7 b) Describe the following with an example:
 i. Nondeterministic algorithm
 ii. NP Problem
 iii. NP Complete Problem.

2 3 **10**

1 2 **10**

3 3 **10**

3 2 **10**
