

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B E

Branch: Artificial Intelligence and Machine Learning

Course Code: 20AM4PCIAI

Course: Introduction to Artificial Intelligence

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Define Artificial Intelligence and mention its applications.	4
	b) Write an algorithm for uniform cost search with an example.	6
	c) Discuss the production rules for solving the water-jug problem using BFS.	10

UNIT - II

2	a) Write an algorithm for simple Hill Climbing and list its limitations.	7
	b) Describe the cryptarithmetic problem of eliminating possibilities. Apply the same to solve the following example. USA + USSR = PEACE.	7
	c) Explain problem reduction with respect to AND-OR graph.	6

OR

3	a) Implement AO* search algorithm with an example.	12
	b) Apply means-end analysis on a simple household robot domain.	8

UNIT - III

4	a) Describe the issues of knowledge representation.	6
	b) Consider the following predicates: Man(Marcus) Pompeian(Marcus) Born(Marcus, 40) $\forall x: man(x) \rightarrow mortal(x)$	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

$\forall x: pompeian(x) \rightarrow died(x, 79)$

Erupted(volcano,79)

$\forall x: \forall t1: \forall t2: mortal(x) \Delta born(x, t1) \Delta gt(t2 - t1, 150)$
 $\rightarrow dead(x, t2)$

Now=1991

$\forall x: \forall tL [alive(x, t) \rightarrow \sim dead(x, t)] \Delta [\sim dead(x, t) \rightarrow alive(x, t)]$

$\forall x: \forall t1: \forall t2: dead(x, t1) \Delta gt(t2, t1) \rightarrow dead(x, t2)$

Prove that: $\sim alive(Marcus, now)$

c) Explain semantic knowledge and ontology-based representation with an **8** example.

OR

5 a) Differentiate forward chaining and backward chaining used in logical inference **8** algorithms.

b) With an illustration, explain the process of converting well-formed formulas to **8** clause form.

c) Differentiate between procedural and declarative knowledge. **4**

UNIT - IV

6 a) Describe the uncertain knowledge in AI with an example. How to handle them? **5**

b) State and explain Baye's rule in combining evidences with an example. **7**

c) Outline the steps on how to construct a Bayesian network in such a way that the **8** resulting joint distribution is a good representation of a given domain, with an example.

UNIT-V

7 a) Define expert systems. Why is an expert system needed? **6**

b) Explain the application of EMYCIN with an example. **6**

c) Explain the EMYCIN rule from the SACON expert systems. **8**
