

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM4PCIML

Max Marks: 100

Course: Introduction to Machine Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - II																																						
3	a)	Apply K-Nearest Neighbor algorithm on the given data with K=3 and determine the target value of the new instance (5, 5).								CO3	PO3	10																												
		<table border="1"> <thead> <tr> <th>Durability</th><th>7</th><th>6</th><th>7</th><th>6</th><th>3</th><th>1</th><th>4</th><th>3</th></tr> <tr> <th>Strength</th><td>7</td><td>4</td><td>4</td><td>5</td><td>4</td><td>4</td><td>3</td><td>5</td></tr> <tr> <th>Quality</th><td>Good</td><td>Bad</td><td>Good</td><td>Good</td><td>Bad</td><td>Bad</td><td>Bad</td><td>Bad</td></tr> </thead> </table>								Durability	7	6	7	6	3	1	4	3	Strength	7	4	4	5	4	4	3	5	Quality	Good	Bad	Good	Good	Bad	Bad	Bad	Bad				
Durability	7	6	7	6	3	1	4	3																																
Strength	7	4	4	5	4	4	3	5																																
Quality	Good	Bad	Good	Good	Bad	Bad	Bad	Bad																																
	b)	Construct decision tree using the following rules:								CO3	PO3	05																												
	c)	Elaborate on the Inductive bias in ID3 search strategy.								CO2	PO1	05																												
		OR																																						
4	a)	Apply the principles of Support Vector Machine (SVM), and derive the best hyperplane possible to classify the given datapoints: (x, y, ClassLabel): (4, 1, +), (4, -1, +), (6, 0, +), (1, 0, -), (0, 1, -), (0, -1, -).								CO3	PO3	10																												
	b)	Explain how the decision tree learning algorithm performs a search through the hypothesis space. What type of search strategy does it employ, and what are the implications of this choice for completeness and optimality?								CO2	PO1	05																												
	c)	Elaborate on the mathematical relation that exist between error function and Gradient update in a Locally weighted regression.								CO1	PO1	05																												
		UNIT - III																																						
5	a)	Differentiate between Hard and Soft voting classifiers with an example.								CO2	PO1	06																												
	b)	Prove that $h_{MDL} = h_{MAP}$ using the concept of Minimum Description Length Principle.								CO2	PO2	06																												
	c)	Consider a Bayesian Belief Network (BBN) used in a spam email detection system. The network consists of three binary variables: <ul style="list-style-type: none"> S: Email is spam W: Contains the word “WIN” L: Has a suspicious link The known probabilities are: $P(S = \text{true}) = 0.2$ $P(W = \text{true} S = \text{true}) = 0.8$ $P(W = \text{true} S = \text{false}) = 0.1$ $P(L = \text{true} S = \text{true}) = 0.9$ $P(L = \text{true} S = \text{false}) = 0.2$								CO1	PO2	08																												

		<p>Answer the following:</p> <ol style="list-style-type: none"> Given that the word “WIN” is present, what is the probability that the email is spam? Given that the email contains a suspicious link, what is the probability that it is spam? Given that both “WIN” is present and a suspicious link is found, what is the probability that the email is spam? 																								
		OR																								
6	a)	Differentiate between Boosting and Stacking.	CO2	PO1	06																					
	b)	Illustrate the Expectation Maximization (EM) algorithm with all mathematical expressions.	CO1	PO1	06																					
	c)	<p>The total probability of two plant species A and B are $P(A)=0.6$ and $P(B)=0.4$ respectively. The conditional probabilities of the features are:</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Feature</th><th>Value</th><th>$P(\text{Value} A)$</th><th>$P(\text{Value} B)$</th></tr> </thead> <tbody> <tr> <td>Color</td><td>Yellow</td><td>0.7</td><td>0.2</td></tr> <tr> <td>Shape</td><td>Round</td><td>0.6</td><td>0.3</td></tr> <tr> <td>Size</td><td>Small</td><td>0.8</td><td>0.4</td></tr> <tr> <td>Smell</td><td>Yes</td><td>0.3</td><td>0.9</td></tr> </tbody> </table> <p>Use the Naïve Bayes classification technique to predict the species (A or B) for the entity: $\{\text{Color}=\text{Yellow}, \text{Shape}=\text{Round}, \text{Size}=\text{Small}, \text{Smell}=\text{Yes}\}$</p>	Feature	Value	$P(\text{Value} A)$	$P(\text{Value} B)$	Color	Yellow	0.7	0.2	Shape	Round	0.6	0.3	Size	Small	0.8	0.4	Smell	Yes	0.3	0.9	CO3	PO3	08	
Feature	Value	$P(\text{Value} A)$	$P(\text{Value} B)$																							
Color	Yellow	0.7	0.2																							
Shape	Round	0.6	0.3																							
Size	Small	0.8	0.4																							
Smell	Yes	0.3	0.9																							
		UNIT - IV																								
7	a)	Using K-means algorithm, classify the given data points {2, 4, 10, 12, 3, 20, 30, 11, 25} to 2 clusters. Show the intermediate steps until convergence. Start the iteration by considering the data points 4 and 11 as initial cluster centroids.	CO3	PO3	12																					
	b)	Explain any 2 anomaly detection techniques in detail.	CO2	PO1	08																					
		OR																								
8	a)	Elaborate on the importance of Support and Confidence in Association Rule Mining.	CO2	PO1	05																					
	b)	Explain the procedural steps of ELBOW method to determine the optimal value of k in the K-means algorithm.	CO1	PO1	05																					
	c)	Classify the given points into various clusters using Hierarchical Agglomerative Single Linkage Clustering technique. Conclude the answer in the form of a dendrogram.	CO3	PO3	10																					
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Points</th><th>P1</th><th>P2</th><th>P3</th><th>P4</th><th>P5</th><th>P6</th></tr> </thead> <tbody> <tr> <td>x</td><td>0.4</td><td>0.21</td><td>0.35</td><td>0.26</td><td>0.08</td><td>0.45</td></tr> <tr> <td>y</td><td>0.53</td><td>0.38</td><td>0.32</td><td>0.19</td><td>0.41</td><td>0.3</td></tr> </tbody> </table>	Points	P1	P2	P3	P4	P5	P6	x	0.4	0.21	0.35	0.26	0.08	0.45	y	0.53	0.38	0.32	0.19	0.41	0.3			
Points	P1	P2	P3	P4	P5	P6																				
x	0.4	0.21	0.35	0.26	0.08	0.45																				
y	0.53	0.38	0.32	0.19	0.41	0.3																				
		UNIT - V																								
9	a)	“Suppose Feature A1 and A2 both achieve 60% accuracy individually. Feature A3 gives only 50% accuracy (same as random guessing in binary classification). However, when A3 is combined with A1, the subset {A1, A3} achieves 90% accuracy.”.	CO3	PO3	08																					

		Which category of feature subset selection does the given scenario best suits and why? Support your answer with the appropriate algorithmic procedure and explanation.																		
	b)	Differentiate between feature extraction and feature selection methods of Dimensionality reduction technique.	CO2	PO1	06															
	c)	Explain the procedural steps of Linear Discriminant Analysis.	CO2	PO1	06															
		OR																		
10	a)	Reduce the dimensionality of the given dataset using Principal Component Analysis algorithm. <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Data Point / Feature</th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> </tr> </thead> <tbody> <tr> <td>X1</td> <td>4</td> <td>8</td> <td>13</td> <td>7</td> </tr> <tr> <td>X2</td> <td>11</td> <td>4</td> <td>5</td> <td>14</td> </tr> </tbody> </table>	Data Point / Feature	A	B	C	D	X1	4	8	13	7	X2	11	4	5	14	CO3	PO3	12
Data Point / Feature	A	B	C	D																
X1	4	8	13	7																
X2	11	4	5	14																
	b)	How does Locally Linear Embedding (LLE), linearly model local relationships and reduce dimensionality while preserving relationships? Explain with relevant mathematical expressions.	CO1	PO1	08															

B.M.S.C.E. - EVEN SEM 2024-25