

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM4PCIML

Max Marks: 100

Course: INTRODUCTION TO MACHINE LEARNING

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		ii. Analyze the learned concept for Martian and write set of conjunctive rules.																																				
	c)	Explain the hypothesis space search in decision tree learning.	CO1	PO2	4																																	
		OR																																				
3	a)	Using the concept of Linear Support Vector Machine, obtain the corresponding hyperplane for the given Positively labeled data points (3,1) (3,-1) (6,1) (6,-1) and Negatively labeled data points (1,0) (0,1) (0,-1) (-1,0).	CO2	PO2	8																																	
	b)	Sample instances classifying the patient as Diabetic or not is summarized below. By applying K-Nearest Neighbor Classifier with k=3, classify the new instance: BMI=43.6, Age=40 accordingly. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>BMI</td><td>33.6</td><td>26.6</td><td>23.4</td><td>43.1</td><td>35.3</td><td>35.9</td><td>36.7</td><td>25.7</td><td>23.3</td><td>31</td></tr> <tr><td>Age</td><td>50</td><td>30</td><td>40</td><td>67</td><td>23</td><td>67</td><td>45</td><td>46</td><td>29</td><td>56</td></tr> <tr><td>Sugar</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td></tr> </table>	BMI	33.6	26.6	23.4	43.1	35.3	35.9	36.7	25.7	23.3	31	Age	50	30	40	67	23	67	45	46	29	56	Sugar	1	0	0	0	1	1	1	0	0	1	CO2	PO2	8
BMI	33.6	26.6	23.4	43.1	35.3	35.9	36.7	25.7	23.3	31																												
Age	50	30	40	67	23	67	45	46	29	56																												
Sugar	1	0	0	0	1	1	1	0	0	1																												
	c)	Construct the decision trees to represent the following Boolean functions: i. $A \vee [B \wedge C]$ ii. $[A \wedge B] \vee [C \wedge D]$	CO1	PO2	4																																	
		UNIT - III																																				
4	a)	Derive an equation for the concept Maximum Likelihood and Least Squared Error Hypothesis.	CO1	PO1	6																																	
	b)	A data scientist has constructed a simplified Bayesian Belief Network (BBN) for diagnosing whether a patient has a certain Disease (D) based on two symptoms (S1 and S2). The observed conditional probabilities are: $D \rightarrow S1; \quad D \rightarrow S2;$ <table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>D</td><td>$P(D)$</td><td>$P(S1 D)$</td><td>$P(S1 \sim D)$</td><td>$P(S2 D)$</td><td>$P(S2 \sim D)$</td></tr> <tr><td>True</td><td>0.1</td><td>0.8</td><td>0.3</td><td>0.7</td><td>0.4</td></tr> <tr><td>False</td><td>0.9</td><td>0.2</td><td>0.7</td><td>0.3</td><td>0.6</td></tr> </table> Compute: i. The joint probability of Symptoms given Disease. ii. The total probability of Observing Symptoms. iii. The probability of having the Disease given the Symptoms.	D	$P(D)$	$P(S1 D)$	$P(S1 \sim D)$	$P(S2 D)$	$P(S2 \sim D)$	True	0.1	0.8	0.3	0.7	0.4	False	0.9	0.2	0.7	0.3	0.6	CO3	PO3	8															
D	$P(D)$	$P(S1 D)$	$P(S1 \sim D)$	$P(S2 D)$	$P(S2 \sim D)$																																	
True	0.1	0.8	0.3	0.7	0.4																																	
False	0.9	0.2	0.7	0.3	0.6																																	
	c)	Distinguish between voting, bagging and boosting ensemble learning techniques.	CO1	PO1	6																																	
		OR																																				
5	a)	Illustrate the process of estimating means of K Gaussians, using Estimation Maximization (EM) algorithm.	CO1	PO1	8																																	
	b)	Derive Minimum Description Length Principle using Bayes theorem.	CO1	PO1	6																																	
	c)	Consider the attributes {colour, legs, height, smelly} for the species classes:{M,H}. Apply Naïve bayes classifier to classify	CO2	PO2	6																																	

		the new instance – (Colour=Green, Legs=2, Height=tall and Smelly=No)																																																								
		<table border="1"> <thead> <tr> <th>No</th><th>Colour</th><th>Legs</th><th>Height</th><th>Smelly</th><th>Species</th></tr> </thead> <tbody> <tr><td>1</td><td>White</td><td>3</td><td>Short</td><td>Yes</td><td>M</td></tr> <tr><td>2</td><td>Green</td><td>2</td><td>Tall</td><td>No</td><td>M</td></tr> <tr><td>3</td><td>Green</td><td>3</td><td>Short</td><td>Yes</td><td>M</td></tr> <tr><td>4</td><td>White</td><td>3</td><td>Short</td><td>Yes</td><td>M</td></tr> <tr><td>5</td><td>Green</td><td>2</td><td>Short</td><td>No</td><td>H</td></tr> <tr><td>6</td><td>White</td><td>2</td><td>Tall</td><td>No</td><td>H</td></tr> <tr><td>7</td><td>White</td><td>2</td><td>Tall</td><td>No</td><td>H</td></tr> <tr><td>8</td><td>White</td><td>2</td><td>Short</td><td>Yes</td><td>H</td></tr> </tbody> </table>	No	Colour	Legs	Height	Smelly	Species	1	White	3	Short	Yes	M	2	Green	2	Tall	No	M	3	Green	3	Short	Yes	M	4	White	3	Short	Yes	M	5	Green	2	Short	No	H	6	White	2	Tall	No	H	7	White	2	Tall	No	H	8	White	2	Short	Yes	H		
No	Colour	Legs	Height	Smelly	Species																																																					
1	White	3	Short	Yes	M																																																					
2	Green	2	Tall	No	M																																																					
3	Green	3	Short	Yes	M																																																					
4	White	3	Short	Yes	M																																																					
5	Green	2	Short	No	H																																																					
6	White	2	Tall	No	H																																																					
7	White	2	Tall	No	H																																																					
8	White	2	Short	Yes	H																																																					
		UNIT - IV																																																								
6	a)	Illustrate any 2 methods that could be employed to determine the optimal value of k in k-means clustering along with the pros and cons of each method.	CO1	PO1	8																																																					
	b)	For the given data, apply single-link hierarchical clustering technique to identify the clusters and conclude the solution by drawing a dendrogram.	CO1	PO2	6																																																					
	c)	Identify the challenges associated with anomaly detection and elaborate on a real-world application which extensively employs the said technique	CO1	PO1	6																																																					
		UNIT - V																																																								
7	a)	Illustrate the following: i. Kernel PCA ii. Locally Linear Embedding	CO1	PO1	6																																																					
	b)	i. Provide the steps used in Linear Discriminant Analysis (LDA) method. ii. Apply LDA method to the data points: class1((2,2),(4,3),(5,1)) and class2((1,3),(5,5),(3,6)) and reduce the dimensionality.	CO1	PO2	10																																																					
	c)	Differentiate between sequential forward subset selection and sequential backward subset selection.	CO1	PO1	4																																																					
