

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Program: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 22AM4PCOPS

Course: Operating Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																					
1	a)	Explain the role of kernel and user modes in designing an operating system.	<i>CO 1</i>	<i>PO 1</i>	5																					
	b)	Briefly discuss events that causes process termination.	<i>CO 1</i>	<i>PO 1</i>	5																					
	c)	Design a solution for implementation of multithreaded web server with a neat diagram.	<i>CO 2</i>	<i>PO 2</i>	10																					
UNIT - II																										
2	a)	Consider the set of 6 processes whose arrival time and burst time are given below:	<i>CO 3</i>	<i>PO 3</i>	10																					
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Process Id</th> <th>Arrival time</th> <th>Burst time</th> </tr> </thead> <tbody> <tr> <td>P1</td> <td>0</td> <td>7</td> </tr> <tr> <td>P2</td> <td>1</td> <td>5</td> </tr> <tr> <td>P3</td> <td>2</td> <td>3</td> </tr> <tr> <td>P4</td> <td>3</td> <td>1</td> </tr> <tr> <td>P5</td> <td>4</td> <td>2</td> </tr> <tr> <td>P6</td> <td>5</td> <td>1</td> </tr> </tbody> </table> <p>Apply the Shortest Job First Scheduling algorithms for both pre-emptive and non-pre-emptive to answer the following questions.</p> <ol style="list-style-type: none"> Represent the execution of these processes using Gantt chart. Calculate the average waiting time. Calculate the average turnaround time. 	Process Id	Arrival time	Burst time	P1	0	7	P2	1	5	P3	2	3	P4	3	1	P5	4	2	P6	5	1			
Process Id	Arrival time	Burst time																								
P1	0	7																								
P2	1	5																								
P3	2	3																								
P4	3	1																								
P5	4	2																								
P6	5	1																								
	b)	Provide solutions to avoid race condition.	<i>CO 2</i>	<i>PO 2</i>	5																					
	c)	Elaborate on the design issues faced during the implementation of Message-Passing Systems.	<i>CO 2</i>	<i>PO 2</i>	5																					
OR																										
3	a)	In the following example, there are six processes named as P1, P2, P3, P4, P5 and P6. Assume the time quantum of the system as 5 units. With the help of Gantt chart calculate Average turnaround time, Average waiting time, using Round Robin algorithm.	<i>CO 3</i>	<i>PO 3</i>	10																					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<table border="1"> <thead> <tr> <th>Process ID</th><th>Arrival time</th><th>Burst time</th></tr> </thead> <tbody> <tr> <td>P1</td><td>0</td><td>7</td></tr> <tr> <td>P2</td><td>1</td><td>4</td></tr> <tr> <td>P3</td><td>2</td><td>15</td></tr> <tr> <td>P4</td><td>3</td><td>11</td></tr> <tr> <td>P5</td><td>4</td><td>20</td></tr> <tr> <td>P6</td><td>4</td><td>9</td></tr> </tbody> </table>	Process ID	Arrival time	Burst time	P1	0	7	P2	1	4	P3	2	15	P4	3	11	P5	4	20	P6	4	9			
Process ID	Arrival time	Burst time																								
P1	0	7																								
P2	1	4																								
P3	2	15																								
P4	3	11																								
P5	4	20																								
P6	4	9																								
	b)	Demonstrate how semaphore can be used as synchronization tool.	CO 3	PO 3	10																					
		UNIT - III																								
4	a)	<p>Consider the page reference string given below:</p> <p>6, 0, 5, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 5, 2, 0, 5, 6, 0, 5</p> <p>Assuming three empty frames in memory, calculate number of page faults, hit ratio, and miss ratio for LRU and FIFO page replacement algorithms.</p>	CO 3	PO 3	10																					
	b)	Illustrate the mechanism of converting virtual address to physical address with the help of neat labelled diagram.	CO3	PO 3	10																					
		OR																								
5	a)	<p>Consider the following page reference string assuming three empty frames in memory.</p> <p>1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.</p> <p>Calculate number of page faults, hit ratio and miss ratio for Second chance and Optimal page replacement algorithms.</p>	CO 3	PO 3	10																					
	b)	Explore the techniques for managing free memory.			10																					
		UNIT - IV																								
6	a)	<p>i. Consider a disk with 200 tracks (0-199) with the Read-write head initially at the track 50 and the disk queue having input/output requests in the following order:</p> <p>-95, 180, 34, 119, 11, 123, 62, 64</p> <p>Find the total number of track movements of the Read/Write head using FCFS and SSTF.</p> <p>ii Describe the mechanism of SCAN and LOOK disk scheduling algorithms.</p>	CO 3	PO 3	10																					
	b)	Explain the following types of file system implementation:	CO 1	PO 1	10																					
		<p>i) Contiguous</p> <p>ii) Linked list</p>																								
		UNIT - V																								
7	a)	<p>i) Elucidate two deadlock recovery mechanisms.</p> <p>ii) Briefly describe the working of Ostrich algorithm.</p>	CO 2	PO 2	10																					

b) Consider the following system snapshot with resources A, B, C and D and process P0 to P4.

Process
P0
P1
P2
P3
P4

MAX			
A	B	C	D
6	0	1	2
1	7	5	0
2	3	5	6
1	6	5	3
1	6	5	6

ALLOCATION			
A	B	C	D
4	0	0	1
1	1	0	0
1	2	5	4
0	6	3	3
0	2	1	2

AVAILABLE			
A	B	C	D
3	2	1	1

Using banker's algorithm, Answer the following questions:

- What are the contents of the need matrix?
- Is the system in a safe state? If Yes, then what is the safe sequence?
- If a request from process P4 arrives for additional resources of (1,2,0,0), can the banker's algorithm grant the request immediately? Show the new system state and other criteria

CO 3

PO 3

10