

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 22AM4PCOPS

Course: Operating Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																		
1	a)	Describe the various process states using a state transition diagram.	<i>CO1</i>	<i>PO1</i>	6																		
	b)	Illustrate interprocess communication with an example.	<i>CO1</i>	<i>PO2</i>	6																		
	c)	Describe the architecture of multithreaded web server with a neat diagram.	<i>CO2</i>	<i>PO1</i>	8																		
OR																							
2	a)	Microsoft develops a text editor that automatically saves documents to the disk when the save button is pressed. Illustrate different system calls used in this scenario.	<i>CO1</i>	<i>PO2</i>	10																		
	b)	Instagram emphasizes on building a real time messaging interface. Illustrate the classical thread model and describe the implementation of threads in both user and kernel space, ensuring optimal performance and responsiveness for the messaging interface.	<i>CO2</i>	<i>PO1</i>	10																		
UNIT - II																							
3	a)	Illustrate how Producer- Consumer Problem can be implemented using semaphores.	<i>CO2</i>	<i>PO1</i>	6																		
	b)	Explain mutual exclusion using critical region and the four necessary conditions for a good mutual exclusion.	<i>CO1</i>	<i>PO2</i>	6																		
	c)	Consider the following set of 5 processes, with the length of the CPU-burst time given in milliseconds:	<i>CO3</i>	<i>PO3</i>	8																		
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Process</th> <th style="text-align: center;">Burst Time</th> <th style="text-align: center;">Priority</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;">P1</td> <td style="text-align: center;">10</td> <td style="text-align: center;">3</td> </tr> <tr> <td style="text-align: center;">P2</td> <td style="text-align: center;">1</td> <td style="text-align: center;">1</td> </tr> <tr> <td style="text-align: center;">P3</td> <td style="text-align: center;">2</td> <td style="text-align: center;">3</td> </tr> <tr> <td style="text-align: center;">P4</td> <td style="text-align: center;">1</td> <td style="text-align: center;">4</td> </tr> <tr> <td style="text-align: center;">P5</td> <td style="text-align: center;">5</td> <td style="text-align: center;">2</td> </tr> </tbody> </table> <p>The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.</p>						Process	Burst Time	Priority	P1	10	3	P2	1	1	P3	2	3	P4	1	4	P5	5	2
Process	Burst Time	Priority																					
P1	10	3																					
P2	1	1																					
P3	2	3																					
P4	1	4																					
P5	5	2																					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		i. Draw Gantt charts illustrating the execution of these processes using a priority (a smaller priority number implies a higher priority), and Round Robin (quantum= 1) scheduling algorithms. ii. Calculate the average turnaround time and average waiting for each of the scheduling algorithms																					
		OR																					
4	a)	i) Define Dining Philosophers problem. Discuss the solution for Dining Philosopher's problem using semaphores. ii) Each user requires 400kb of memory (350kb code + 50kb data). How much memory is required for 50 users? Shared pages allow "multiple users to share the same memory pages for code" that is identical among them, if so how much memory required for 50 users.	CO3	PO4	10																		
	b)	Consider the following set of processes, with the length of the CPU burst time given in milliseconds <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Process</th> <th>Burst Time</th> <th>Priority</th> </tr> </thead> <tbody> <tr> <td>P1</td> <td>2</td> <td>2</td> </tr> <tr> <td>P2</td> <td>1</td> <td>1</td> </tr> <tr> <td>P3</td> <td>8</td> <td>4</td> </tr> <tr> <td>P4</td> <td>4</td> <td>2</td> </tr> <tr> <td>P5</td> <td>5</td> <td>3</td> </tr> </tbody> </table> <p>The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.</p> <p>i. Draw Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: SJF, non-preemptive priority (a larger priority number implies a higher priority), ii. Compute waiting time and turnaround time of each process for each of the scheduling algorithms in part a?</p>	Process	Burst Time	Priority	P1	2	2	P2	1	1	P3	8	4	P4	4	2	P5	5	3	CO2	PO3	10
Process	Burst Time	Priority																					
P1	2	2																					
P2	1	1																					
P3	8	4																					
P4	4	2																					
P5	5	3																					
UNIT - III																							
5	a)	Elucidate the working of Optimal page replacement algorithm with an example.	CO1	PO1	5																		
	b)	Discuss the working principle of Working Set page replacement algorithm. Apply the same algorithm for a given page reference string: 2,6,1,5,7,7,7,5,1,6,2,3,4,1,2,3,4,4,4 with window size(W)=5. Calculate the number of Page faults, Page hits, Hit ratio, and Miss ratio.	CO3	PO3	10																		
	c)	Describe the benefits of Virtual memory technique.	CO1	PO1	5																		
OR																							
6	a)	Describe the two ways to keep track of memory usage.	CO3	PO3	10																		
	b)	How Second chance page replacement algorithm differ from FIFO page replacement algorithm? Apply second chance page	CO1	PO2	5																		

		replacement algorithm for the given page reference string: 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 3, 5 with 3-page frames. Calculate the following: i. number of page faults ii. page hits iii. page hit ratio iv. page miss ratio.																																																																																													
	c)	How virtual addresses can be converted into physical addresses using Memory Management Unit. Describe with an example.	CO2	PO3	5																																																																																										
UNIT - IV																																																																																															
7	a)	Describe the concept of a file with its attributes and operations.	CO3	PO4	5																																																																																										
	b)	Explain contiguous and linked disk space allocation methods with diagram.	CO1	PO1	5																																																																																										
	c)	A disk drive has 5000 cylinders, numbered 0 to 4999. The drive is currently serving a request at cylinder 143. The queue of pending requests in FIFO order is 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. Starting from current head position, what is a total distance travelled (in cylinders) that the Disk arm to satisfy the requests using FCFS, SSTF, SCAN, LOOK and C-LOOK algorithms.	CO3	PO4	10																																																																																										
OR																																																																																															
8	a)	Illustrate on different components of disk architecture and highlight the importance of disk formatting in Operating Systems.	CO2	PO3	10																																																																																										
	b)	VMware is developing a new AI-based operating system designed to support various types of file systems seamlessly. The experts have decided to implement a Virtual File System (VFS) layer. Highlight the importance of this decision and elucidate how the VFS works.	CO3	PO4	10																																																																																										
UNIT - V																																																																																															
9	a)	Define deadlock. Identify and explain briefly the necessary conditions for the deadlock to occur.	CO1	PO1	5																																																																																										
	b)	Consider the following snapshot of a system: <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th rowspan="2">Process</th> <th colspan="4">Allocation</th> <th colspan="4">Max</th> <th colspan="4">Available</th> </tr> <tr> <th>A</th> <th>B</th> <th>C</th> <th>D</th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> </tr> </thead> <tbody> <tr> <td>P0</td> <td>2</td> <td>0</td> <td>0</td> <td>1</td> <td>4</td> <td>2</td> <td>1</td> <td>2</td> <td>3</td> <td>3</td> <td>2</td> <td>1</td> </tr> <tr> <td>P1</td> <td>3</td> <td>1</td> <td>2</td> <td>1</td> <td>5</td> <td>2</td> <td>5</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>P2</td> <td>2</td> <td>1</td> <td>0</td> <td>3</td> <td>2</td> <td>3</td> <td>1</td> <td>6</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>P3</td> <td>1</td> <td>3</td> <td>1</td> <td>2</td> <td>1</td> <td>4</td> <td>2</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>P4</td> <td>1</td> <td>4</td> <td>3</td> <td>2</td> <td>3</td> <td>6</td> <td>6</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> Apply Banker's algorithm to find the following: i) Is the system being safe? If so, give the safe sequence. ii) If process P2 requests (0, 1, 1, 3) resources can it be granted immediately?	Process	Allocation				Max				Available				A	B	C	D	A	B	C	D	A	B	C	D	P0	2	0	0	1	4	2	1	2	3	3	2	1	P1	3	1	2	1	5	2	5	2					P2	2	1	0	3	2	3	1	6					P3	1	3	1	2	1	4	2	4					P4	1	4	3	2	3	6	6	5					CO3	PO3	10
Process	Allocation				Max				Available																																																																																						
	A	B	C	D	A	B	C	D	A	B	C	D																																																																																			
P0	2	0	0	1	4	2	1	2	3	3	2	1																																																																																			
P1	3	1	2	1	5	2	5	2																																																																																							
P2	2	1	0	3	2	3	1	6																																																																																							
P3	1	3	1	2	1	4	2	4																																																																																							
P4	1	4	3	2	3	6	6	5																																																																																							
	c)	Illustrate Master – Slave multiprocessors with an example.	CO2	PO1	5																																																																																										
OR																																																																																															
10	a)	The system administrator at Microsoft noticed that the company's servers experienced a Blue Screen of Death (BSOD) error on July	CO3	PO4	10																																																																																										

		19th, 2024, causing them to get stuck and wait for other servers to release their resources. This deadlock situation significantly disrupted services for aircraft and satellites. Illustrate how the system administrator can implement different deadlock recovery strategies to resolve this issue.			
	b)	Elucidate on different types of Multi-Processing Operating Systems with their advantages and disadvantages.	CO1	PO1	10

B.M.S.C.E. - ODD SEM 2024-25