

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 22AM4PCOPS

Course: Operating Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks																		
1	a)	Explicate the working of read system call diagrammatically.		<i>CO1</i>	<i>PO2</i>	10																		
	b)	Explain thread implementation in user space and kernel space.		<i>CO1</i>	<i>PO2</i>	10																		
			UNIT - II																					
2	a)	Explain producer consumer problem using semaphores.		<i>CO2</i>	<i>PO2</i>	10																		
	b)	Consider the following set of processes and answer the following questions: <table border="1"> <thead> <tr> <th>Process</th><th>Arrival Time</th><th>Burst Time</th></tr> </thead> <tbody> <tr> <td>P1</td><td>2</td><td>6</td></tr> <tr> <td>P2</td><td>5</td><td>2</td></tr> <tr> <td>P3</td><td>1</td><td>8</td></tr> <tr> <td>P4</td><td>0</td><td>3</td></tr> <tr> <td>P5</td><td>4</td><td>4</td></tr> </tbody> </table> i. Draw Gantt charts showing the execution of these processes using FCFS, preemptive SJF, non-preemptive SJF. ii. Compute Turnaround time and waiting time for each process.	Process	Arrival Time	Burst Time	P1	2	6	P2	5	2	P3	1	8	P4	0	3	P5	4	4		<i>CO2</i>	<i>PO3</i>	10
Process	Arrival Time	Burst Time																						
P1	2	6																						
P2	5	2																						
P3	1	8																						
P4	0	3																						
P5	4	4																						
			OR																					
3	a)	Justify how readers writers' problem can be used to access database efficiently. Support your answer with code snippet.		<i>CO2</i>	<i>PO4</i>	10																		
	b)	For the processes listed below, draw Gantt charts using preemptive and non-preemptive priority scheduling algorithm. Assume a large priority number has a higher priority. Calculate average weighting time and average turnaround time.		<i>CO2</i>	<i>PO3</i>	10																		

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<table border="1"> <thead> <tr> <th>Process</th><th>Arrival time</th><th>Burst time</th><th>Priority</th></tr> </thead> <tbody> <tr> <td>P₁</td><td>0</td><td>6</td><td>4</td></tr> <tr> <td>P₂</td><td>3</td><td>5</td><td>2</td></tr> <tr> <td>P₃</td><td>3</td><td>3</td><td>6</td></tr> <tr> <td>P₄</td><td>5</td><td>5</td><td>3</td></tr> </tbody> </table>	Process	Arrival time	Burst time	Priority	P ₁	0	6	4	P ₂	3	5	2	P ₃	3	3	6	P ₄	5	5	3		
Process	Arrival time	Burst time	Priority																					
P ₁	0	6	4																					
P ₂	3	5	2																					
P ₃	3	3	6																					
P ₄	5	5	3																					
UNIT – III																								
4	a)	<p>Consider the following page reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2.</p> <p>Assuming 3 empty frames in memory find number of page faults would occur for:</p> <ul style="list-style-type: none"> i) Optimal Page Replacement Algorithm. ii) FIFO Page Replacement Algorithm. iii) LRU Page Replacement Algorithm. 	CO2	PO3	10																			
	b)	Illustrate the mapping between virtual and physical memory address with an example.	CO2	PO2	10																			
OR																								
5	a)	Justify the need of demand paging. With a neat diagram explain the steps in handling the page fault.	CO2	PO2	10																			
	b)	<p>Demonstrate the working of the following page replacement algorithms with suitable examples for each.</p> <ul style="list-style-type: none"> i) Second Chance algorithm ii) Working set model 	CO2	PO3	10																			
UNIT - IV																								
6	a)	<p>Assume a disk with 200 tracks and disk request queue has random requests in it. The requested disks in the order are as follows: 55 ,58 ,39 ,18 ,90 ,160 ,150 ,38 ,184</p> <p>Starting from track 100, calculate average seek length using FCFS, SSTF, SCAN algorithm. Examine the best disk scheduling algorithm for the above scenario?</p>	CO2	PO3	10																			
	b)	Explain any five system calls relating to file operations in detail with syntax for each.	CO2	PO2	10																			
UNIT - V																								
7	a)	Explain the various ways of deadlock recovery and the necessary conditions for a deadlock to occur.	CO2	PO2	10																			
	b)	Consider the following snapshot of a system:	CO3	PO2	10																			

Process	Allocation				Max				Available			
	A	B	C	D	A	B	C	D	A	B	C	D
P0	2	0	0	1	4	2	1	2	3	3	2	1
P1	3	1	2	1	5	2	5	2				
P2	2	1	0	3	2	3	1	6				
P3	1	3	1	2	1	4	2	4				
P4	1	4	3	2	3	6	6	5				

Apply Banker's algorithm to find:

- Is the system being safe? If so, give the safe sequence.
- If process P2 requests (0, 1, 1, 3) resources can it be granted immediately?
