

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM4ESOPS

Max Marks: 100

Course: Operating Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																					
1	a)	Describe the various states a process using a state transition diagram.	CO1	PO1	6																					
	b)	Describe the architecture for multithreaded web server with a neat diagram.	CO2	PO1	8																					
	c)	Explain the roles and interactions between kernel and user mode in an operating system with a neat sketch.	CO2	PO1	6																					
OR																										
2	a)	Illustrate the use of fork and exec system calls.	CO1	PO1	6																					
	b)	Describe the various conditions under which a process can be terminated in an operating system.	CO1	PO1	6																					
	c)	Explain the multithreading models in detail with relevant examples.	CO1	PO1	8																					
UNIT - II																										
3	a)	In the following example, there are six processes named P1, P2, P3, P4, P5 and P6. Their arrival time and burst time are given below in the table. The time quantum of the system is 2 units. Apply the Round Robin Job scheduling algorithm and answer the following questions i. Represent the execution of the processes with the help of the Gantt chart. ii. Calculate the average turnaround time and average waiting time.	CO2	PO2	10																					
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Process ID</th> <th>Arrival time</th> <th>Burst time</th> </tr> </thead> <tbody> <tr> <td>P1</td> <td>0</td> <td>4</td> </tr> <tr> <td>P2</td> <td>1</td> <td>5</td> </tr> <tr> <td>P3</td> <td>2</td> <td>2</td> </tr> <tr> <td>P4</td> <td>3</td> <td>1</td> </tr> <tr> <td>P5</td> <td>4</td> <td>6</td> </tr> <tr> <td>P6</td> <td>6</td> <td>3</td> </tr> </tbody> </table>						Process ID	Arrival time	Burst time	P1	0	4	P2	1	5	P3	2	2	P4	3	1	P5	4	6	P6	6	3
Process ID	Arrival time	Burst time																								
P1	0	4																								
P2	1	5																								
P3	2	2																								
P4	3	1																								
P5	4	6																								
P6	6	3																								

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Elaborate the four necessary conditions and strict alternation approach to the mutual exclusion with a turn variable.	CO2	PO1	10																								
		OR																											
4	a)	Consider the set of 5 processes whose arrival time and burst time are given below. The CPU scheduling policy is a priority preemptive (The higher number represents higher priority) and shortest remaining time first.	CO2	PO2	5																								
		<table border="1"> <thead> <tr> <th>Process id</th> <th>Arrival time</th> <th>Burst time</th> <th>Priority</th> </tr> </thead> <tbody> <tr> <td>P1</td> <td>0</td> <td>4</td> <td>2</td> </tr> <tr> <td>P2</td> <td>1</td> <td>3</td> <td>3</td> </tr> <tr> <td>P3</td> <td>2</td> <td>1</td> <td>4</td> </tr> <tr> <td>P4</td> <td>3</td> <td>5</td> <td>5</td> </tr> <tr> <td>P5</td> <td>4</td> <td>2</td> <td>5</td> </tr> </tbody> </table> <ul style="list-style-type: none"> i. Compute the average waiting time and average turnaround time. ii. Illustrate the scheduling of the processes using the Gantt chart 	Process id	Arrival time	Burst time	Priority	P1	0	4	2	P2	1	3	3	P3	2	1	4	P4	3	5	5	P5	4	2	5			
Process id	Arrival time	Burst time	Priority																										
P1	0	4	2																										
P2	1	3	3																										
P3	2	1	4																										
P4	3	5	5																										
P5	4	2	5																										
	b)	Consider the set of 3 processes whose arrival time and burst time are given below:	CO2	PO2	5																								
		<table border="1"> <thead> <tr> <th>Process id</th> <th>Arrival time</th> <th>Burst time</th> </tr> </thead> <tbody> <tr> <td>P1</td> <td>0</td> <td>9</td> </tr> <tr> <td>P2</td> <td>1</td> <td>4</td> </tr> <tr> <td>P3</td> <td>2</td> <td>9</td> </tr> </tbody> </table> <p>Apply SRTF CPU scheduling policy using Gantt chart, and calculate the average waiting time and average turnaround time.</p>	Process id	Arrival time	Burst time	P1	0	9	P2	1	4	P3	2	9															
Process id	Arrival time	Burst time																											
P1	0	9																											
P2	1	4																											
P3	2	9																											
	c)	In a restaurant, the chef prepares dishes ordered by the customers where the orders are placed in order ticket system. When a customer places an order, it is queued in the ticket system. The restaurant's staff retrieves the orders from the queue and deliver them to the respective tables. Devise a solution to address the above scenario using semaphores. Justify with the help of pseudocode.	CO2	PO2	10																								
		UNIT - III																											
5	a)	Illustrate the mechanism of converting virtual addresses to physical addresses using memory management unit.	CO2	PO1	6																								
	b)	Apply FIFO and LRU page replacement algorithms for the given reference string 6,0,5,2,0,3,0,4,2,3,0,3,2,5,2,0,5,6,0,5 (assuming 3 frame size) to find the total number of page faults, page hits, hit ratio and miss ratio.	CO2	PO2	10																								
	c)	With a help of neat diagram briefly explain the concept of swapping in memory management system.	CO2	PO1	4																								
		OR																											
6	a)	Describe the working of optimal page replacement algorithm and apply the same for a given page reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 with 3-page frames to find	CO2	PO2	6																								

		the total number of page faults, page hits, and page fault probability, percentage of page fault.																																																														
	b)	Illustrate the working of second chance page replacement algorithm and apply the same to compute number of page faults, page hits, page hit ratio, and page miss ratio for the given page reference string: 0, 4, 1, 4, 2, 4, 3, 4, 2, 4, 0, 4, 1, 4, 2, 4, 3, 4 with 3-page frames.	CO2	PO1	6																																																											
	c)	Explain the concept of virtual memory and the structure of the page table in memory management system.	CO2	PO1	8																																																											
UNIT - IV																																																																
7	a)	Assume that there are three resources A, B, and C. There are 4 processes P0 to P3. At T_0 we have the following resource-allocation state.	CO2	PO2	10																																																											
		<table border="1"> <thead> <tr> <th rowspan="2"></th> <th colspan="3">Allocation</th> <th colspan="3">Max</th> <th colspan="3">Available</th> </tr> <tr> <th>A</th> <th>B</th> <th>C</th> <th>A</th> <th>B</th> <th>C</th> <th>A</th> <th>B</th> <th>C</th> </tr> </thead> <tbody> <tr> <td>P0</td> <td>1</td> <td>0</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> </tr> <tr> <td>P1</td> <td>2</td> <td>1</td> <td>2</td> <td>5</td> <td>4</td> <td>4</td> <td></td> <td></td> <td></td> </tr> <tr> <td>P2</td> <td>3</td> <td>0</td> <td>0</td> <td>3</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> </tr> <tr> <td>P3</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <ol style="list-style-type: none"> Calculate the contents of need matrix. Is the system in a safe state? If so, find the sequence. 		Allocation			Max			Available			A	B	C	A	B	C	A	B	C	P0	1	0	1	2	1	1	2	1	1	P1	2	1	2	5	4	4				P2	3	0	0	3	1	1				P3	1	0	1	1	1	1						
	Allocation			Max			Available																																																									
	A	B	C	A	B	C	A	B	C																																																							
P0	1	0	1	2	1	1	2	1	1																																																							
P1	2	1	2	5	4	4																																																										
P2	3	0	0	3	1	1																																																										
P3	1	0	1	1	1	1																																																										
	b)	<p>For a disk with 1000 cylinders (numbered 0-999), calculate the total number of tracks the disk arm must move to fulfill all the requests in the disk queue. Assume the previous request was serviced at track 756, and the disk arm is moving towards track 0. The disk queue contains requests for the following tracks: 811, 348, 153, 968, 407, and 500. Perform the calculations for the following disk scheduling algorithms and plot the corresponding graph:</p> <ol style="list-style-type: none"> SSTF (Shortest Seek Time First) SCAN (Elevator Algorithm). 	CO2	PO2	6																																																											
	c)	<ol style="list-style-type: none"> For the given Resource Allocation Graph, write the wait-for-graph. Justify whether there is any deadlock occurrence. 	CO2	PO2	4																																																											
		<pre> graph TD P1((P1)) --> R1[R1] P1 --> R2[R2] P2((P2)) --> R1 P2 --> R3[R3] P3((P3)) --> R3 P4((P4)) --> R2 P4 --> R3 </pre>																																																														
OR																																																																
8	a)	Define deadlock. Discuss the necessary conditions for deadlock to occur in detail.	CO1	PO1	6																																																											
	b)	Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65, 67. The head is initially at cylinder	CO2	PO2	8																																																											

		<p>number 53. The cylinders are numbered from 0 to 199. Calculate the total head movement for the following disk scheduling algorithms:</p> <ol style="list-style-type: none"> C-SCAN C-LOOK 			
	c)	Consider the resource allocation graph given below. Find if the system is in a deadlock state otherwise find a safe sequence.	CO2	PO2	6
UNIT - V					
9	a)	Explain the following types of file system implementation:	CO2	PO1	7
	i)	Contiguous			
	ii)	Linked list			
	b)	A photo editing application allows users to open, modify, and save images. Describe the different file access methods (sequential and random) and explain which method is best suited for the application when a user needs to edit specific portions of an image file.	CO2	PO2	6
	c)	Describe the three major methods of allocating disk space for storing files with neat sketches and strategies involved in implementing file sharing.	CO2	PO1	7
OR					
10	a)	Discuss the concept of a file, highlighting its attributes and the operations performed on it.	CO2	PO1	7
	b)	Describe the Bit Vector and Linked List techniques for free space management.	CO1	PO1	6
	c)	Explain the direct and sequential access methods in file operations with suitable examples for each.	CO1	PO1	7
