

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Machine Learning

Course Code: 22AM4PCPSM

Course: Probability and Statistics for Machine Learning

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define sample space and event. Prove that a sample space of N possible outcomes yields 2^N possible events.			<i>CO1</i>	<i>PO2</i>	05
		b)	In a group of 100 persons, 72 people can speak English and 23 can speak French. Find <ul style="list-style-type: none"> i) How many can speak English only? ii) How many can speak French only? iii) How many can speak both English and French? 			<i>CO1</i>	<i>PO2</i>	08
		c)	Construct equally likely outcomes for the probability. Consider a card is drawn from a scaffold 52 card deck indiscriminately. Using the relation derived identify the likelihood that the chosen card is a spade.			<i>CO1</i>	<i>PO2</i>	07
			UNIT - II					
2	a)	A program consists of two modules. The number of errors, X_1 , in the 1 st module and the number of errors, X_2 , in the 2 nd module have the joint distributions $P(0,0)=P(0,1)=P(1,0)=0.2$, $P(1,1)=P(1,2)=P(1,3)=0.1$, $P(0,2)=P(0,3)=0.05$. The maximum number errors in X_1 is 1 and X_2 is 3 Find: <ul style="list-style-type: none"> i) Marginal Distributions of $Y = X_1 + X_2$ ii) The Probability of number of errors in the first module. iii) The distribution of the total number of errors in the program. 			<i>CO2</i>	<i>PO4</i>	06	
	b)	For the Bernoulli distribution derive mean, variance & Establish relationship among them			<i>CO1</i>	<i>PO2</i>	07	
	c)	The 8% of population in a small-town work as a teacher. <ul style="list-style-type: none"> i) Relate the suitable discrete distribution. ii) What is the probability that the 10th person in the town is a teacher? iii) Calculate Mean, Variance and Standard Deviation. 			<i>CO2</i>	<i>PO4</i>	07	

UNIT - III																							
3	a)	Outline the computational procedure of a population median with respect to continuous and discrete distributions along with necessary plots.	CO2	PO4	06																		
	b)	Given data for the continuous series <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><th>Class Interval</th><th>F(frequency)</th></tr> <tr><td>0-5</td><td>5</td></tr> <tr><td>5-10</td><td>8</td></tr> <tr><td>10-15</td><td>12</td></tr> <tr><td>15-20</td><td>16</td></tr> <tr><td>20-25</td><td>20</td></tr> <tr><td>25-30</td><td>10</td></tr> <tr><td>30-35</td><td>4</td></tr> <tr><td>35-40</td><td>3</td></tr> </table> Calculate i) quartile deviation ii) Coefficient of quartile deviation	Class Interval	F(frequency)	0-5	5	5-10	8	10-15	12	15-20	16	20-25	20	25-30	10	30-35	4	35-40	3	CO2	PO4	07
Class Interval	F(frequency)																						
0-5	5																						
5-10	8																						
10-15	12																						
15-20	16																						
20-25	20																						
25-30	10																						
30-35	4																						
35-40	3																						
	c)	Using simple descriptive statistics, find Mean, Median, Mode, the quartiles Q1, Q2, Q3 and the interquartile range of the following data 20,30,25,23,22,32,36,18. Plot the graph to represent the quartiles identified.	CO2	PO4	07																		
UNIT - IV																							
4	a)	If X is a continuous random variable with the following pdf $f(x) = \begin{cases} \alpha(2x-x^2) & \text{where } 0 < x < 2 \\ 0 & \text{Otherwise} \end{cases}$ Find i) α ii) $P(x > 1)$	CO2	PO4	06																		
	b)	Derive the maximum likelihood estimator of an geometric distribution function $f(x,p)=p(1-p)^{x-1}$.	CO3	PO3	08																		
	c)	Define the terminologies i). Population Moment ii). Population Central Moment iii). Method of Moments Estimator	CO2	PO4	06																		
OR																							
5	a)	Differentiate between z-Test and t-Test.	CO2	PO4	06																		
	b)	The number of concurrent users for some internet service provider has always averaged 5000 with a standard deviation of 800. After an equipment upgrade, the average number of users at 100 randomly selected, moment of time is 5200. Does it indicate, at 5% level of significance, that the mean number of concurrent users has increased? Assume that standard deviation of the number of concurrent users has not changed.	CO3	PO3	07																		

	c)	Construct the confidence interval for a general method where the level of significance is 95% in terms of quartiles.	CO2	PO4	07																								
		UNIT - V																											
6	a)	The values of x and their corresponding y values are <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td></tr> <tr> <td>y</td><td>2</td><td>3</td><td>5</td><td>3</td><td>4</td></tr> </table> i) Derive the linear regression model ii) Estimate the value of y when x = 10	x	0	1	2	3	4	y	2	3	5	3	4	CO2	PO4	07												
x	0	1	2	3	4																								
y	2	3	5	3	4																								
	b)	In the study of performance of 3 detergents and 3 different water temperature, the following readings were obtained with specially designed equipment. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Water temperature</td><td>A</td><td>B</td><td>C</td></tr> <tr> <td>Cold Water</td><td>47</td><td>45</td><td>50</td></tr> <tr> <td>Warm Water</td><td>39</td><td>42</td><td>52</td></tr> <tr> <td>Hot Water</td><td>44</td><td>36</td><td>48</td></tr> </table> using two-way ANNOVA. i) Find grand total correction factor ii) Calculate the ratio of F iii) Write the conclusion	Water temperature	A	B	C	Cold Water	47	45	50	Warm Water	39	42	52	Hot Water	44	36	48	CO2	PO4	08								
Water temperature	A	B	C																										
Cold Water	47	45	50																										
Warm Water	39	42	52																										
Hot Water	44	36	48																										
	c)	For a univariate linear regression, show that $SS_{TOT}=SS_{REG}+SS_{ERR}$	CO3	PO3	05																								
		OR																											
7	a)	Differentiate between ANOVA and R-Square tests with an example.	CO2	PO4	06																								
	b)	Apply matrix method for the given database and determine the Least Squares Estimation. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Data Size(gigabytes), x1</td><td>6</td><td>7</td><td>7</td><td>8</td><td>10</td><td>10</td><td>15</td></tr> <tr> <td>Number of tables, x2</td><td>4</td><td>20</td><td>20</td><td>10</td><td>10</td><td>2</td><td>1</td></tr> <tr> <td>Processed requests, y</td><td>40</td><td>55</td><td>50</td><td>41</td><td>17</td><td>26</td><td>16</td></tr> </table>	Data Size(gigabytes), x1	6	7	7	8	10	10	15	Number of tables, x2	4	20	20	10	10	2	1	Processed requests, y	40	55	50	41	17	26	16	CO2	PO4	07
Data Size(gigabytes), x1	6	7	7	8	10	10	15																						
Number of tables, x2	4	20	20	10	10	2	1																						
Processed requests, y	40	55	50	41	17	26	16																						
	c)	Given the following data i) With the help of PCA, reduce its dimensionality. ii) Populate the Covariance Matrix iii) Find Eigen Value <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Feature</td><td>Example-1</td><td>Example-2</td><td>Example-3</td><td>Example-4</td></tr> <tr> <td>x</td><td>4</td><td>8</td><td>13</td><td>7</td></tr> <tr> <td>y</td><td>11</td><td>4</td><td>5</td><td>14</td></tr> </table>	Feature	Example-1	Example-2	Example-3	Example-4	x	4	8	13	7	y	11	4	5	14	CO3	PO3	07									
Feature	Example-1	Example-2	Example-3	Example-4																									
x	4	8	13	7																									
y	11	4	5	14																									
