

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Artificial Intelligence and Machine Learning

Duration: 3 hrs.

Course Code: 24AM5PCCNS

Max Marks: 100

Course: COMPUTER NETWORKS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Detail the Seven-Layer OSI Model, focusing on the purpose and functions of each layer, and analyze how each layer contributes to network communication	<i>CO1</i>	<i>PO1</i>	10
	b)	What is the significance of layering in network architecture? Analyze how protocols interact within and across layers to enable seamless communication.	<i>CO1</i>	<i>PO2</i>	10
OR					
2	a)	Depict in detail the processes of Encapsulation, Multiplexing, and Demultiplexing, and analyze their roles in ensuring efficient data communication within a network.	<i>CO1</i>	<i>PO1</i>	10
	b)	Analyze how bandwidth and latency impact network performance, and evaluate the significance of the delay \times bandwidth product in high-speed networks.	<i>CO1</i>	<i>PO2</i>	10
UNIT - II					
3	a)	Analyze the purpose of encoding in networking, and discuss common encoding techniques. Evaluate their significance in ensuring reliable data transmission across networks.	<i>CO1</i>	<i>PO2</i>	10
	b)	Examine the principles of error detection in networking. Illustrate how the Internet checksum algorithm and cyclic redundancy check (CRC) operate, and evaluate their limitations in ensuring data integrity.	<i>CO1</i>	<i>PO1</i>	10
OR					
4	a)	Discuss the Stop-and-Wait protocol and the Sliding Window protocol for reliable transmission. Compare and contrast their efficiency and performance, highlighting the key differences in how they manage data flow.	<i>CO1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Compare and contrast 802.11 (Wi-Fi) and 802.15.1 (Bluetooth) in terms of performance, bandwidth, and suitability for different applications.	CO1	PO2	10
		UNIT - III			
5	a)	What are the basic principles behind switching in computer networks? Compare and contrast datagram switching and virtual circuit switching with a neat diagram.	CO1	PO2	10
	b)	Analyze the role of the Border Gateway Protocol (BGP) in the global Internet, focusing on how it facilitates inter-domain routing and ensures connectivity between autonomous systems.	CO1	PO2	10
		OR			
6	a)	Examine how the Distance-Vector routing algorithm works, using the example of the Routing Information Protocol (RIP).	CO1	PO1	10
	b)	Evaluate the necessity of IPv6, highlighting its key features. Assess the strategies for deploying IPv6 alongside IPv4 in the current networking landscape.	CO2	PO2	10
		UNIT - IV			
7	a)	Outline the role of the User Datagram Protocol (UDP) in end-to-end communication. Highlight its characteristics and functionality. Why is UDP referred to as a "simple demultiplexer"?	CO2	PO1	10
	b)	Assess how queuing disciplines like FIFO and Fair Queuing address network performance issues, and compare their effectiveness in managing traffic and ensuring fairness.	CO2	PO2	10
		OR			
8	a)	Detail out on the key mechanisms of TCP congestion control, including slow start, congestion avoidance, and fast retransmit.	CO2	PO1	10
	b)	Evaluate the sliding window mechanism used in TCP, focusing on how it enhances throughput and ensures reliable data delivery in network communication.	CO2	PO1	10
		UNIT - V			
	a)	Illustrate the Diffie–Hellman key exchange algorithm and its role in secure communication.	CO3	PO1	10
	b)	Outline in detail Session Control and Call Control (SDP, SIP, H.323).	CO3	PO1	10
		OR			
10	a)	Elaborate Traditional Applications in networks.	CO3	PO1	10
	b)	Examine the relationship between trust and threats in network security, and identify the types of threats that can undermine trust within a network environment.	CO3	PO1	10
