

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## June 2025 Semester End Main Examinations

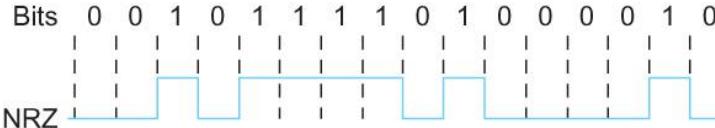
**Programme: B.E.**

**Semester: V**

**Branch: Artificial Intelligence and Machine Learning**

**Duration: 3 hrs.**

**Course Code: 24AM5PCCNS**


**Max Marks: 100**

**Course: Computer Networks**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b>  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CO</b>  | <b>PO</b>  | <b>Marks</b> |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
|------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|---|---|---|---|--|---|---|---|---|---|---|---|--|---|---|---|---|---|---|---|--|---|---|---|---|---|---|---|--|---|---|---|---|---|---|---|--|---|---|---|---|---|---|---|--|---|---|---|---|---|---|---|--|--|--|--|--|--|--|--|--|------------|------------|-----------|
| 1                | a) | Signify the importance of OSI layer model in detail. Also mention the protocols employed in each layer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
|                  | b) | Provide a socket programming solution which allows a user on one machine (client) to type in and send text to a user on another machine (server).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| <b>OR</b>        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |              |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 2                | a) | Differentiate OSI and TCP/IP network models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
|                  | b) | Define and justify why different network performance measure are required in a computer network design. Also, calculate the propagation time if the distance between the two points is 12,000 km? Assume the propagation speed to be $2.4 \times 10^8$ m/s in cable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| <b>UNIT - II</b> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |              |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 3                | a) | Analyze the following series of 7x7 bit items of data that need to be transmitted from source to destination. <table border="1" style="margin-left: 20px;"> <tr><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td></td></tr> <tr><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td></td></tr> <tr><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td></td></tr> <tr><td>0</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td></td></tr> <tr><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td></td></tr> <tr><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td></td></tr> <tr><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table> Answer the following. <ol style="list-style-type: none"> <li>Assuming an even parity is followed fill in the parity bit for each blank.</li> <li>Will two-dimensional parity check catch all 2-bit errors.</li> <li>If the first two bits of the first 2 rows are flipped (0 becomes 1 and 1 becomes 0). Predict the behavior of the above technique. Can it still detect the errors in the data?</li> </ol> | 1          | 1          | 1            | 0 | 1 | 1 | 0 |  | 1 | 1 | 0 | 1 | 0 | 1 | 0 |  | 0 | 1 | 1 | 1 | 1 | 1 | 0 |  | 0 | 1 | 1 | 0 | 1 | 0 | 0 |  | 1 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 0 | 1 | 0 | 1 | 0 | 1 |  | 1 | 1 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  | <i>CO1</i> | <i>PO2</i> | <b>10</b> |
| 1                | 1  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | 1          | 1            | 0 |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 1                | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          | 0          | 1            | 0 |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 0                | 1  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1          | 1          | 1            | 0 |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 0                | 1  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | 1          | 0            | 0 |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 1                | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | 0          | 1            | 0 |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 0                | 0  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | 1          | 0            | 1 |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
| 1                | 1  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          | 0          | 0            | 0 |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |
|                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |              |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |   |   |   |   |   |   |   |  |  |  |  |  |  |  |  |  |            |            |           |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |           |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | b) | Describe 802.15.1 Standard. Also mention its applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO1 | PO1 | <b>05</b> |
|   | c) | Justify how a reliable transmission is achieved during data transmission in networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO1 | PO2 | <b>05</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |           |
| 4 | a) | Perform CRC check for the data stream 10110011 with a generator polynomial $x^4+x+1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO1 | PO1 | <b>10</b> |
|   | b) | Why does error occur during framing? Analyze the following original data and determine its validity using two-dimensional parity check.<br><br>Original data <span style="border: 1px solid black; padding: 2px;">10110011 : 10101011 : 01011010 : 11010101</span>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO1 | PO2 | <b>05</b> |
|   | c) | Analyze the following bit signal pattern and determine the type of encoding scheme used.<br><br> <p>Bits: 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0<br/>NRZ:                                    </p> The diagram shows a sequence of 16 bits: 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0. Below the bits is the NRZ (Non-Return-to-Zero) signal representation. Vertical dashed lines indicate the bit boundaries. The signal is high (1) for bits 0, 1, 3, 5, 6, 7, 10, 11, and low (0) for bits 2, 4, 8, 9, 12, 13, 14, 15. This represents a Manchester-like encoding where a transition always occurs at the midpoint of each bit period. | CO1 | PO2 | <b>05</b> |
|   |    | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |           |
| 5 | a) | A block of addresses is granted to a small organization. We know that one of the addresses is 192.12.33.35/28. What is the first address in the block? Find the last address for the block? Find the number of addresses?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO2 | PO2 | <b>10</b> |
|   | b) | Illustrate class full addressing Scheme with default subnet masks in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO2 | PO1 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |           |
| 6 | a) | Illustrate the working principle of BGP protocol in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO2 | PO1 | <b>10</b> |
|   | b) | In a network with ten hosts, the 6 <sup>th</sup> host's IP address is 192.10.15.40. Identify the network id to which this host belongs to.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO2 | PO2 | <b>10</b> |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |           |
| 7 | a) | In what way TCP and UDP protocol differs? Justify which protocol is suitable for video streaming and file transfer applications in a network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO2 | PO2 | <b>10</b> |
|   | b) | Describe how TCP protocol handles congestion avoidance and congestion detection problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO2 | PO1 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |           |
| 8 | a) | Provide solutions for the following<br>i. When the re-transmission timer expires<br>ii. Sender has not received an acknowledgment for a packet within the expected time frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO2 | PO2 | <b>10</b> |
|   | b) | Illustrate TCP and UDP protocol header formats in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO2 | PO1 | <b>10</b> |

|  |    |    | UNIT - V                                                                                                                                                  |     |     |           |
|--|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|  | 9  | a) | Differentiate symmetric and asymmetric key exchange mechanisms. Also provide mathematical representation of the same.                                     | CO3 | PO2 | <b>06</b> |
|  |    | b) | Illustrate Diffie Hellman Key exchange technique with suitable example.                                                                                   | CO3 | PO1 | <b>08</b> |
|  |    | c) | Using Ceaser cipher with a shift key of 3 & 5 encrypt the message “PAY MORE MONEY”.                                                                       | CO3 | PO2 | <b>06</b> |
|  |    |    | <b>OR</b>                                                                                                                                                 |     |     |           |
|  | 10 | a) | Define cryptology, cryptography and cryptanalysis with an example each.                                                                                   | CO3 | PO1 | <b>06</b> |
|  |    | b) | Illustrate RSA algorithm. Using RSA public key encryption technique if $p=3$ , $q=11$ and $d=7$ , and given the value of $e=3$ , encrypt the message= 19. | CO3 | PO2 | <b>08</b> |
|  |    | c) | Describe Session Initiation Protocol (SIP) used in various multimedia applications.                                                                       | CO3 | PO1 | <b>06</b> |

\*\*\*\*\*