

B.M.S. College of Engineering, Bengaluru-560019

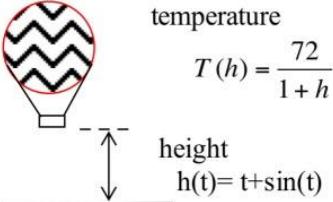
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 23AM5HSCSM


Course: Calculus and Statistics for Machine Intelligence

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a) Assume that you are riding in a balloon, and at time t (in minutes) you are at $h(t) = t + \sin(t)$ feet high. If the temperature at an elevation h is $T(h) = \frac{72}{1+h}$ degrees Fahrenheit, how fast is your temperature changing when $t = 5$ minutes?	<i>CO 1</i>	<i>PO 2</i>	10
		<p>temperature $T(h) = \frac{72}{1+h}$</p> <p>height $h(t) = t + \sin(t)$</p> <p>Fig. 2</p>			
	b)	If $x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then find the Jacobian $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$	<i>CO 1</i>	<i>PO 1</i>	10
OR					
2	a)	Using the first order principle, find the derivative of $\cos(x)$	<i>CO 1</i>	<i>PO 1</i>	08
	b)	Evaluate $\int \frac{3x^2+12x+11}{(x+1)(x+2)(x+3)} dx$.	<i>CO 1</i>	<i>PO 1</i>	06
	c)	Find the curve of steepest descent for the ellipsoid $4x^2 + y^2 + 4z^2 = 16, z \geq 0$	<i>CO 1</i>	<i>PO 1</i>	06
UNIT - II					
3	a)	Write a short note on Advantages and limitations of best subset selection.	<i>CO 2</i>	<i>PO 1</i>	05

	b)	<p>Given database and predictor model $y = 18.005 + 0.39x_1 - 0.623x_2$</p> <table border="1"> <tr><td>X1</td><td>6</td><td>8</td><td>9</td><td>11</td><td>15</td><td>17</td></tr> <tr><td>X2</td><td>13</td><td>10</td><td>6</td><td>4</td><td>2</td><td>2</td></tr> <tr><td>y</td><td>28</td><td>22</td><td>18</td><td>12</td><td>8</td><td>2</td></tr> </table> <p>Calculate R^2 and adjusted R^2</p>	X1	6	8	9	11	15	17	X2	13	10	6	4	2	2	y	28	22	18	12	8	2	CO 2	PO 1	07
X1	6	8	9	11	15	17																				
X2	13	10	6	4	2	2																				
y	28	22	18	12	8	2																				
	c)	Differentiate between ridge and lasso regression.	08																							
		OR																								
4	a)	Explain the subset selection method of linear regression along with the associated challenges and possible solutions.	CO 2	PO 1	10																					
	b)	Given feature X with values 3,4,5,6,7 and the target variable Y with values 4,6,8,10,12 Compute the ridge regression coefficients, for $\lambda = 2$	CO 2	PO 1	10																					
		UNIT - III																								
5	a)	Differentiate between L1 and L2 regularization.	CO 2	PO 1	05																					
	b)	<p>In the given training set, each data point has two features - one on the horizontal axis and the second on the vertical axis. Each point is in one of two classes: 'X' (class 1), 'O' (class -1).</p> <p>i. Line A is on the horizontal axis with an intercept of -1. Line B has a slope of $-1/2$ and an intercept of -2 on the vertical axis. Find the possible values of w to produce line A and line B.</p> <p>ii. For the w found in (i), show that $2w$ still corresponds to the same separating hyperplane (i.e. to the same lines A and B).</p>	CO 2	PO 3	07																					
	c)	Derive the maximum likelihood estimator for a logistic regression model.	CO 2	PO 1	08																					
		OR																								
6	a)	Derive the mathematical formulation of logistic regression and the sigmoid function.	CO 2	PO 1	07																					
	b)	<p>The dataset of Pass or fail in an exam of 5 students is given in the table</p> <table border="1"> <tr><td>Hours study</td><td>29</td><td>15</td><td>33</td><td>28</td><td>39</td></tr> <tr><td>Pass(1)/fail(0)</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td></tr> </table> <p>Use logistic regression as classifier to answer</p>	Hours study	29	15	33	28	39	Pass(1)/fail(0)	0	0	1	1	1	CO 2	PO 2	08									
Hours study	29	15	33	28	39																					
Pass(1)/fail(0)	0	0	1	1	1																					

		<p>i. Calculate the probability of pass for the student who studied 33 hours.</p> <p>ii. At least how many hours student should study that makes he will pass the course with the probability more than 95%. By assuming $\log(odds) = -64 + 2 * hours$.</p>																					
	c)	Elaborate the importance of regularization in Machine Learning.	CO 1	PO 1	05																		
UNIT - IV																							
7	a)	<p>Solve the given Linear Programming Problem (LPP) graphically.</p> <p>Maximize: $Z = 8x + y$</p> <p>Subjected to the constraints: $x + y = 40$, $2x + y = 60$, $x \geq 0$, $y \geq 0$</p>	CO 3	PO 2	06																		
	b)	Maximize the function $u = 4x^2 + 3xy + 6y^2$ using Lagrange multiplier, subjected to the constraint $x + y = 56$	CO 3	PO 3	07																		
	c)	<p>For the given actual and predicted values of a regression problem, compute the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean squared Error (RMSE).</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>Actual values</td> <td>250</td> <td>110</td> <td>500</td> <td>200</td> <td>330</td> <td>490</td> <td>670</td> <td>210</td> </tr> <tr> <td>Predicted values</td> <td>265</td> <td>140</td> <td>480</td> <td>215</td> <td>290</td> <td>515</td> <td>750</td> <td>210</td> </tr> </table>	Actual values	250	110	500	200	330	490	670	210	Predicted values	265	140	480	215	290	515	750	210	CO 3	PO 1	07
Actual values	250	110	500	200	330	490	670	210															
Predicted values	265	140	480	215	290	515	750	210															
		OR																					
8	a)	<p>Dorian company makes luxury cars and jeeps for high-income men and women. It wishes to advertise with 1 minute spots in comedy shows and football games. Each comedy spot costs \$50K and is seen by 7M high-income women and 2M high-income men. Each football spot costs \$100K and is seen by 2M high-income women and 12M high-income men. How can Dorian reach 28M high-income women and 24M high-income men at the least cost? [Note: Solve the stated problem using graphical method]</p>	CO 3	PO 3	06																		
	b)	Find the critical points of the function $f(x, y) = 2x^3 - 3x^2 y - 12x^2 - 3y^2$ and determine their type i.e. local min/local max/saddle point.	CO 3	PO 3	07																		
	c)	Find the maximum and minimum based on hessian matrix of the function $f(x, y, z) = x^3 + y^3 + z^3 - 9xy - 9xz - 27x$	CO 3	PO 1	07																		
UNIT - V																							
9	a)	<p>Consider the following data</p> <p>D1 : [I am], [am Sam]</p> <p>D2 : [Sam I], [I am]</p> <p>D3 : [I do], [do not], [not like], [like green], [green eggs], [eggs and], [and ham]</p> <p>D4 : [I do], [do not], [not like], [like them], [them Sam], [Sam I], [I am]</p> <p>Find the Jaccard similarity of the following:</p> <p>i) JS(D1,D2) ii) JS(D1,D3)</p> <p>iii) JS(D1,D4) iv) JS(D2,D3)</p> <p>v) JS(D2,D4) vi) JS(D3,D4)</p>	CO 3	PO 2	06																		

	b)	<p>User recommendations for the movies are documented below. With the help of collaborative filtering based similarity measure, analyze the records and conclude your observations accordingly.</p> <table border="1"> <thead> <tr> <th>User</th><th>Movie1</th><th>Movie2</th><th>Movie3</th><th>Movie4</th></tr> </thead> <tbody> <tr> <td>User 1</td><td>5</td><td>4</td><td></td><td></td></tr> <tr> <td>User 2</td><td>4</td><td></td><td>3</td><td></td></tr> <tr> <td>User 3</td><td></td><td>1</td><td></td><td>2</td></tr> <tr> <td>User 4</td><td>1</td><td>2</td><td></td><td></td></tr> </tbody> </table>	User	Movie1	Movie2	Movie3	Movie4	User 1	5	4			User 2	4		3		User 3		1		2	User 4	1	2			CO 3	PO 2	07																	
User	Movie1	Movie2	Movie3	Movie4																																											
User 1	5	4																																													
User 2	4		3																																												
User 3		1		2																																											
User 4	1	2																																													
	c)	<p>For the vectors $X = [1,2,-1]$ and $Y = [2,1,1]$ in the Euclidian space, find</p> <ol style="list-style-type: none"> Similarity between X and Y Jaccard distance Cosine distance 	CO 3	PO 1	07																																										
		OR																																													
10	a)	<p>Calculate the Edit distance between strings $X = A B C D E$ and $Y = A C F D E G$ using</p> <ol style="list-style-type: none"> LCS method (Longest common subsequence method) Classical method 	CO 3	PO 1	06																																										
	b)	<p>The points $(1,2,2)$ and $(2,5,3)$ are in 3D Euclidian space. Compute L_1 and L_2 norms.</p>	CO 3	PO 1	07																																										
	c)	<p>Customer rate the movies between 1 and 5, where 1- Least likely, 5- Most likely. Using collaborative filtering, find M5 of Customer 1.</p> <table border="1"> <thead> <tr> <th>Movies</th> <th>M1</th> <th>M2</th> <th>M3</th> <th>M4</th> <th>M5</th> </tr> <tr> <th>Customer</th> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </thead> <tbody> <tr> <td>Customer 1</td> <td>5</td> <td>3</td> <td>4</td> <td>4</td> <td>??</td> </tr> <tr> <td>Customer 2</td> <td>3</td> <td>1</td> <td>2</td> <td>3</td> <td>3</td> </tr> <tr> <td>Customer 3</td> <td>4</td> <td>3</td> <td>4</td> <td>3</td> <td>53</td> </tr> <tr> <td>Customer 4</td> <td>3</td> <td>3</td> <td>1</td> <td>5</td> <td>4</td> </tr> <tr> <td>Customer 5</td> <td>1</td> <td>5</td> <td>5</td> <td>2</td> <td>1</td> </tr> </tbody> </table>	Movies	M1	M2	M3	M4	M5	Customer						Customer 1	5	3	4	4	??	Customer 2	3	1	2	3	3	Customer 3	4	3	4	3	53	Customer 4	3	3	1	5	4	Customer 5	1	5	5	2	1	CO 3	PO 1	07
Movies	M1	M2	M3	M4	M5																																										
Customer																																															
Customer 1	5	3	4	4	??																																										
Customer 2	3	1	2	3	3																																										
Customer 3	4	3	4	3	53																																										
Customer 4	3	3	1	5	4																																										
Customer 5	1	5	5	2	1																																										
